# HG changeset patch # User haftmann # Date 1329557745 -3600 # Node ID 42298c5d33b10f6041b0051cae347596c324af37 # Parent 69f45ffd5091a6c84b207dd622a5f56791153832 tuned proofs diff -r 69f45ffd5091 -r 42298c5d33b1 src/HOL/ex/Primrec.thy --- a/src/HOL/ex/Primrec.thy Sun Feb 12 22:10:05 2012 +0100 +++ b/src/HOL/ex/Primrec.thy Sat Feb 18 10:35:45 2012 +0100 @@ -158,7 +158,7 @@ lemma ack_add_bound2: "i < ack k j ==> i + j < ack (4 + k) j" apply (rule less_trans [of _ "ack k j + ack 0 j"]) - apply (blast intro: add_less_mono less_ack2) + apply (blast intro: add_less_mono) apply (rule ack_add_bound [THEN less_le_trans]) apply simp done diff -r 69f45ffd5091 -r 42298c5d33b1 src/HOL/ex/Set_Algebras.thy --- a/src/HOL/ex/Set_Algebras.thy Sun Feb 12 22:10:05 2012 +0100 +++ b/src/HOL/ex/Set_Algebras.thy Sat Feb 18 10:35:45 2012 +0100 @@ -118,7 +118,7 @@ theorem set_plus_rearrange4: "C \ ((a::'a::comm_monoid_add) +o D) = a +o (C \ D)" - apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus_def add_ac) + apply (auto intro!: simp add: elt_set_plus_def set_plus_def add_ac) apply (rule_tac x = "aa + ba" in exI) apply (auto simp add: add_ac) done @@ -176,7 +176,7 @@ by (auto simp add: elt_set_plus_def) lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \ B" - apply (auto intro!: subsetI simp add: set_plus_def) + apply (auto intro!: simp add: set_plus_def) apply (rule_tac x = 0 in bexI) apply (rule_tac x = x in bexI) apply (auto simp add: add_ac) @@ -229,7 +229,7 @@ theorem set_times_rearrange4: "C \ ((a::'a::comm_monoid_mult) *o D) = a *o (C \ D)" - apply (auto intro!: subsetI simp add: elt_set_times_def set_times_def + apply (auto intro!: simp add: elt_set_times_def set_times_def mult_ac) apply (rule_tac x = "aa * ba" in exI) apply (auto simp add: mult_ac) @@ -301,7 +301,7 @@ lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \ D <= a *o D \ C \ D" - apply (auto intro!: subsetI simp add: + apply (auto simp add: elt_set_plus_def elt_set_times_def set_times_def set_plus_def ring_distribs) apply auto