# HG changeset patch # User huffman # Date 1286886321 25200 # Node ID 427106657e044712433dd2cc3f5a172f5b17e7e3 # Parent c5b5f7a3a3b13bb8de23ee75416608ac0c0bda9e remove unused lemmas cont_fst_snd_D1, cont_fst_snd_D2 diff -r c5b5f7a3a3b1 -r 427106657e04 src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Mon Oct 11 21:35:31 2010 -0700 +++ b/src/HOLCF/Cfun.thy Tue Oct 12 05:25:21 2010 -0700 @@ -600,10 +600,10 @@ using f proof (rule cont2cont_Let) fix x show "cont (\y. g x y)" - using g by (rule cont_fst_snd_D2) + using g by (simp add: prod_cont_iff) next fix y show "cont (\x. g x y)" - using g by (rule cont_fst_snd_D1) + using g by (simp add: prod_cont_iff) qed text {* The simple version (suggested by Joachim Breitner) is needed if diff -r c5b5f7a3a3b1 -r 427106657e04 src/HOLCF/Product_Cpo.thy --- a/src/HOLCF/Product_Cpo.thy Mon Oct 11 21:35:31 2010 -0700 +++ b/src/HOLCF/Product_Cpo.thy Tue Oct 12 05:25:21 2010 -0700 @@ -267,14 +267,6 @@ apply (simp only: prod_contI) done -lemma cont_fst_snd_D1: - "cont (\p. f (fst p) (snd p)) \ cont (\x. f x y)" -by (drule cont_compose [OF _ cont_pair1], simp) - -lemma cont_fst_snd_D2: - "cont (\p. f (fst p) (snd p)) \ cont (\y. f x y)" -by (drule cont_compose [OF _ cont_pair2], simp) - lemma cont2cont_prod_case' [simp, cont2cont]: assumes f: "cont (\p. f (fst p) (fst (snd p)) (snd (snd p)))" assumes g: "cont (\x. g x)"