# HG changeset patch # User huffman # Date 1214855276 -7200 # Node ID 42ee5e7c3b50a6f3a9fcf825a1a307a1b16724b3 # Parent 1fb3d1219c12fc43d38664327a313b8784acce21 remove unused Cset.thy diff -r 1fb3d1219c12 -r 42ee5e7c3b50 src/HOLCF/Cset.thy --- a/src/HOLCF/Cset.thy Mon Jun 30 14:06:44 2008 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,117 +0,0 @@ -(* Title: HOLCF/Cset.thy - ID: $Id$ - Author: Brian Huffman -*) - -header {* Set as a pointed cpo *} - -theory Cset -imports Adm -begin - -subsection {* Type definition *} - -defaultsort type - -typedef (open) 'a cset = "UNIV :: 'a set set" .. - -declare Rep_cset_inverse [simp] -declare Abs_cset_inverse [simplified, simp] - -instantiation cset :: (type) po -begin - -definition - sq_le_cset_def: - "x \ y \ Rep_cset x \ Rep_cset y" - -instance proof - fix x :: "'a cset" - show "x \ x" - unfolding sq_le_cset_def - by (rule subset_refl) -next - fix x y z :: "'a cset" - assume "x \ y" "y \ z" thus "x \ z" - unfolding sq_le_cset_def - by (rule subset_trans) -next - fix x y :: "'a cset" - assume "x \ y" "y \ x" thus "x = y" - unfolding sq_le_cset_def Rep_cset_inject [symmetric] - by (rule subset_antisym) -qed - -end - -lemma is_lub_UNION: "A <<| Abs_cset (UNION A Rep_cset)" -unfolding is_lub_def is_ub_def sq_le_cset_def by auto - -instance cset :: (type) cpo -proof - fix S :: "nat \ 'a cset" - show "\x. range S <<| x" - by (fast intro: is_lub_UNION) -qed - -lemma lub_cset: "lub A = Abs_cset (UNION A Rep_cset)" -by (rule thelubI [OF is_lub_UNION]) - -lemma Rep_cset_lub: "Rep_cset (lub A) = UNION A Rep_cset" -by (simp add: lub_cset) - -text {* cset is pointed *} - -lemma cset_minimal: "Abs_cset {} \ x" -unfolding sq_le_cset_def by simp - -instance cset :: (type) pcpo -by intro_classes (fast intro: cset_minimal) - -lemma inst_cset_pcpo: "\ = Abs_cset {}" -by (rule cset_minimal [THEN UU_I, symmetric]) - -lemma Rep_cset_UU: "Rep_cset \ = {}" -unfolding inst_cset_pcpo by simp - -lemmas Rep_cset_simps = Rep_cset_lub Rep_cset_UU - -subsection {* Admissibility of set predicates *} - -lemma adm_nonempty: "adm (\A. \x. x \ Rep_cset A)" -by (rule admI, simp add: Rep_cset_lub, fast) - -lemma adm_in: "adm (\A. x \ Rep_cset A)" -by (rule admI, simp add: Rep_cset_lub) - -lemma adm_not_in: "adm (\A. x \ Rep_cset A)" -by (rule admI, simp add: Rep_cset_lub) - -lemma adm_Ball: "(\x. adm (\A. P A x)) \ adm (\A. \x\Rep_cset A. P A x)" -unfolding Ball_def by (simp add: adm_not_in) - -lemma adm_Bex: "adm (\A. \x\Rep_cset A. P x)" -by (rule admI, simp add: Rep_cset_lub) - -lemma adm_subset: "adm (\A. Rep_cset A \ B)" -by (rule admI, auto simp add: Rep_cset_lub) - -lemma adm_superset: "adm (\A. B \ Rep_cset A)" -by (rule admI, auto simp add: Rep_cset_lub) - -lemmas adm_set_lemmas = - adm_nonempty adm_in adm_not_in adm_Bex adm_Ball adm_subset adm_superset - -subsection {* Compactness *} - -lemma compact_empty: "compact (Abs_cset {})" -by (fold inst_cset_pcpo, simp) - -lemma compact_insert: "compact (Abs_cset A) \ compact (Abs_cset (insert x A))" -unfolding compact_def sq_le_cset_def -by (simp add: adm_set_lemmas) - -lemma finite_imp_compact: "finite A \ compact (Abs_cset A)" -by (induct A set: finite, rule compact_empty, erule compact_insert) - -end diff -r 1fb3d1219c12 -r 42ee5e7c3b50 src/HOLCF/IsaMakefile --- a/src/HOLCF/IsaMakefile Mon Jun 30 14:06:44 2008 +0200 +++ b/src/HOLCF/IsaMakefile Mon Jun 30 21:47:56 2008 +0200 @@ -30,7 +30,7 @@ $(OUT)/HOLCF: $(OUT)/HOL Adm.thy Bifinite.thy Cfun.thy \ CompactBasis.thy Cont.thy ConvexPD.thy Cprod.thy Discrete.thy \ Domain.thy Ffun.thy Fixrec.thy Fix.thy HOLCF.thy Lift.thy \ - LowerPD.thy One.thy Pcpodef.thy Pcpo.thy Porder.thy Cset.thy \ + LowerPD.thy One.thy Pcpodef.thy Pcpo.thy Porder.thy \ Sprod.thy Ssum.thy Tr.thy UpperPD.thy Up.thy ROOT.ML \ Tools/adm_tac.ML Tools/cont_consts.ML Tools/cont_proc.ML \ Tools/domain/domain_extender.ML Tools/domain/domain_axioms.ML \