# HG changeset patch # User huffman # Date 1130975030 -3600 # Node ID 43000d7a017cd4c6d9b33d7ee883f177c9f914bc # Parent a92b7c5133de40fc79153f652ce1b3e64448d12e changed iterate to a continuous type diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/FOCUS/Stream_adm.thy --- a/src/HOLCF/FOCUS/Stream_adm.thy Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/FOCUS/Stream_adm.thy Thu Nov 03 00:43:50 2005 +0100 @@ -13,13 +13,13 @@ stream_monoP :: "(('a stream) set \ ('a stream) set) \ bool" "stream_monoP F \ \Q i. \P s. Fin i \ #s \ - (s \ F P) = (stream_take i\s \ Q \ iterate i rt s \ P)" + (s \ F P) = (stream_take i\s \ Q \ iterate i\rt\s \ P)" stream_antiP :: "(('a stream) set \ ('a stream) set) \ bool" "stream_antiP F \ \P x. \Q i. (#x < Fin i \ (\y. x \ y \ y \ F P \ x \ F P)) \ (Fin i <= #x \ (\y. x \ y \ - (y \ F P) = (stream_take i\y \ Q \ iterate i rt y \ P)))" + (y \ F P) = (stream_take i\y \ Q \ iterate i\rt\y \ P)))" antitonP :: "'a set => bool" "antitonP P \ \x y. x \ y \ y\P \ x\P" diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/domain/axioms.ML --- a/src/HOLCF/domain/axioms.ML Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/domain/axioms.ML Thu Nov 03 00:43:50 2005 +0100 @@ -83,7 +83,7 @@ val reach_ax = ("reach", mk_trp(cproj (%%:fixN`%%(comp_dname^"_copy")) eqs n `%x_name === %:x_name)); val take_def = ("take_def",%%:(dname^"_take") == mk_lam("n",cproj' - (%%:iterateN $ Bound 0 $ %%:(comp_dname^"_copy") $ UU) eqs n)); + (%%:iterateN $ Bound 0 ` %%:(comp_dname^"_copy") ` UU) eqs n)); val finite_def = ("finite_def",%%:(dname^"_finite") == mk_lam(x_name, mk_ex("n",(%%:(dname^"_take") $ Bound 0)`Bound 1 === Bound 1))); diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/ex/Fix2.ML --- a/src/HOLCF/ex/Fix2.ML Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/ex/Fix2.ML Thu Nov 03 00:43:50 2005 +0100 @@ -13,7 +13,7 @@ qed "lemma1"; -Goal "gix$F=lub(range(%i. iterate i F UU))"; +Goal "gix$F=lub(range(%i. iterate i$F$UU))"; by (rtac (lemma1 RS subst) 1); by (rtac fix_def2 1); qed "lemma2"; diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/ex/Hoare.ML --- a/src/HOLCF/ex/Hoare.ML Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/ex/Hoare.ML Thu Nov 03 00:43:50 2005 +0100 @@ -14,21 +14,21 @@ by (fast_tac HOL_cs 1); qed "hoare_lemma2"; -Goal " (ALL k. b1$(iterate k g x) = TT) | (EX k. b1$(iterate k g x)~=TT)"; +Goal " (ALL k. b1$(iterate k$g$x) = TT) | (EX k. b1$(iterate k$g$x)~=TT)"; by (fast_tac HOL_cs 1); qed "hoare_lemma3"; -Goal "(EX k. b1$(iterate k g x) ~= TT) ==> \ -\ EX k. b1$(iterate k g x) = FF | b1$(iterate k g x) = UU"; +Goal "(EX k. b1$(iterate k$g$x) ~= TT) ==> \ +\ EX k. b1$(iterate k$g$x) = FF | b1$(iterate k$g$x) = UU"; by (etac exE 1); by (rtac exI 1); by (rtac hoare_lemma2 1); by (atac 1); qed "hoare_lemma4"; -Goal "[|(EX k. b1$(iterate k g x) ~= TT);\ -\ k=Least(%n. b1$(iterate n g x) ~= TT)|] ==> \ -\ b1$(iterate k g x)=FF | b1$(iterate k g x)=UU"; +Goal "[|(EX k. b1$(iterate k$g$x) ~= TT);\ +\ k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==> \ +\ b1$(iterate k$g$x)=FF | b1$(iterate k$g$x)=UU"; by (hyp_subst_tac 1); by (rtac hoare_lemma2 1); by (etac exE 1); @@ -45,13 +45,13 @@ by (resolve_tac dist_eq_tr 1); qed "hoare_lemma7"; -Goal "[|(EX k. b1$(iterate k g x) ~= TT);\ -\ k=Least(%n. b1$(iterate n g x) ~= TT)|] ==> \ -\ ALL m. m < k --> b1$(iterate m g x)=TT"; +Goal "[|(EX k. b1$(iterate k$g$x) ~= TT);\ +\ k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==> \ +\ ALL m. m < k --> b1$(iterate m$g$x)=TT"; by (hyp_subst_tac 1); by (etac exE 1); by (strip_tac 1); -by (res_inst_tac [("p","b1$(iterate m g x)")] trE 1); +by (res_inst_tac [("p","b1$(iterate m$g$x)")] trE 1); by (atac 2); by (rtac (le_less_trans RS less_irrefl) 1); by (atac 2); @@ -84,16 +84,16 @@ (** --------- proves about iterations of p and q ---------- **) -Goal "(ALL m. m< Suc k --> b1$(iterate m g x)=TT) -->\ -\ p$(iterate k g x)=p$x"; +Goal "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) -->\ +\ p$(iterate k$g$x)=p$x"; by (induct_tac "k" 1); by (Simp_tac 1); by (Simp_tac 1); by (strip_tac 1); -by (res_inst_tac [("s","p$(iterate n g x)")] trans 1); +by (res_inst_tac [("s","p$(iterate n$g$x)")] trans 1); by (rtac trans 1); by (rtac (p_def3 RS sym) 2); -by (res_inst_tac [("s","TT"),("t","b1$(iterate n g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate n$g$x)")] ssubst 1); by (rtac mp 1); by (etac spec 1); by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); @@ -106,16 +106,16 @@ by (Simp_tac 1); qed "hoare_lemma9"; -Goal "(ALL m. m< Suc k --> b1$(iterate m g x)=TT) --> \ -\ q$(iterate k g x)=q$x"; +Goal "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) --> \ +\ q$(iterate k$g$x)=q$x"; by (induct_tac "k" 1); by (Simp_tac 1); by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); by (strip_tac 1); -by (res_inst_tac [("s","q$(iterate n g x)")] trans 1); +by (res_inst_tac [("s","q$(iterate n$g$x)")] trans 1); by (rtac trans 1); by (rtac (q_def3 RS sym) 2); -by (res_inst_tac [("s","TT"),("t","b1$(iterate n g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate n$g$x)")] ssubst 1); by (fast_tac HOL_cs 1); by (simp_tac HOLCF_ss 1); by (etac mp 1); @@ -123,7 +123,7 @@ by (fast_tac (HOL_cs addSDs [less_Suc_eq RS iffD1]) 1); qed "hoare_lemma24"; -(* -------- results about p for case (EX k. b1$(iterate k g x)~=TT) ------- *) +(* -------- results about p for case (EX k. b1$(iterate k$g$x)~=TT) ------- *) val hoare_lemma10 = (hoare_lemma8 RS (hoare_lemma9 RS mp)); @@ -134,9 +134,9 @@ *) -Goal "(EX n. b1$(iterate n g x) ~= TT) ==>\ -\ k=(LEAST n. b1$(iterate n g x) ~= TT) & b1$(iterate k g x)=FF \ -\ --> p$x = iterate k g x"; +Goal "(EX n. b1$(iterate n$g$x) ~= TT) ==>\ +\ k=(LEAST n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x)=FF \ +\ --> p$x = iterate k$g$x"; by (case_tac "k" 1); by (hyp_subst_tac 1); by (Simp_tac 1); @@ -153,7 +153,7 @@ by (atac 1); by (rtac trans 1); by (rtac p_def3 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate nat g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate nat$g$x)")] ssubst 1); by (rtac (hoare_lemma8 RS spec RS mp) 1); by (atac 1); by (atac 1); @@ -166,8 +166,8 @@ by (simp_tac HOLCF_ss 1); qed "hoare_lemma11"; -Goal "(EX n. b1$(iterate n g x) ~= TT) ==>\ -\ k=Least(%n. b1$(iterate n g x)~=TT) & b1$(iterate k g x)=UU \ +Goal "(EX n. b1$(iterate n$g$x) ~= TT) ==>\ +\ k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU \ \ --> p$x = UU"; by (case_tac "k" 1); by (hyp_subst_tac 1); @@ -187,7 +187,7 @@ by (atac 1); by (rtac trans 1); by (rtac p_def3 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate nat g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate nat$g$x)")] ssubst 1); by (rtac (hoare_lemma8 RS spec RS mp) 1); by (atac 1); by (atac 1); @@ -198,9 +198,9 @@ by (asm_simp_tac HOLCF_ss 1); qed "hoare_lemma12"; -(* -------- results about p for case (ALL k. b1$(iterate k g x)=TT) ------- *) +(* -------- results about p for case (ALL k. b1$(iterate k$g$x)=TT) ------- *) -Goal "(ALL k. b1$(iterate k g x)=TT) ==> ALL k. p$(iterate k g x) = UU"; +Goal "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. p$(iterate k$g$x) = UU"; by (rtac (p_def RS def_fix_ind) 1); by (rtac adm_all 1); by (rtac allI 1); @@ -211,21 +211,21 @@ by (rtac refl 1); by (Simp_tac 1); by (rtac allI 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate k g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate k$g$x)")] ssubst 1); by (etac spec 1); by (asm_simp_tac HOLCF_ss 1); by (rtac (iterate_Suc RS subst) 1); by (etac spec 1); qed "fernpass_lemma"; -Goal "(ALL k. b1$(iterate k g x)=TT) ==> p$x = UU"; +Goal "(ALL k. b1$(iterate k$g$x)=TT) ==> p$x = UU"; by (res_inst_tac [("F1","g"),("t","x")] (iterate_0 RS subst) 1); by (etac (fernpass_lemma RS spec) 1); qed "hoare_lemma16"; -(* -------- results about q for case (ALL k. b1$(iterate k g x)=TT) ------- *) +(* -------- results about q for case (ALL k. b1$(iterate k$g$x)=TT) ------- *) -Goal "(ALL k. b1$(iterate k g x)=TT) ==> ALL k. q$(iterate k g x) = UU"; +Goal "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. q$(iterate k$g$x) = UU"; by (rtac (q_def RS def_fix_ind) 1); by (rtac adm_all 1); by (rtac allI 1); @@ -236,25 +236,25 @@ by (rtac refl 1); by (rtac allI 1); by (Simp_tac 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate k g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate k$g$x)")] ssubst 1); by (etac spec 1); by (asm_simp_tac HOLCF_ss 1); by (rtac (iterate_Suc RS subst) 1); by (etac spec 1); qed "hoare_lemma17"; -Goal "(ALL k. b1$(iterate k g x)=TT) ==> q$x = UU"; +Goal "(ALL k. b1$(iterate k$g$x)=TT) ==> q$x = UU"; by (res_inst_tac [("F1","g"),("t","x")] (iterate_0 RS subst) 1); by (etac (hoare_lemma17 RS spec) 1); qed "hoare_lemma18"; -Goal "(ALL k. (b1::'a->tr)$(iterate k g x)=TT) ==> b1$(UU::'a) = UU | (ALL y. b1$(y::'a)=TT)"; +Goal "(ALL k. (b1::'a->tr)$(iterate k$g$x)=TT) ==> b1$(UU::'a) = UU | (ALL y. b1$(y::'a)=TT)"; by (rtac (flat_codom) 1); by (res_inst_tac [("t","x1")] (iterate_0 RS subst) 1); by (etac spec 1); qed "hoare_lemma19"; -Goal "(ALL y. b1$(y::'a)=TT) ==> ALL k. q$(iterate k g (x::'a)) = UU"; +Goal "(ALL y. b1$(y::'a)=TT) ==> ALL k. q$(iterate k$g$(x::'a)) = UU"; by (rtac (q_def RS def_fix_ind) 1); by (rtac adm_all 1); by (rtac allI 1); @@ -265,7 +265,7 @@ by (rtac refl 1); by (rtac allI 1); by (Simp_tac 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate k g (x::'a))")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate k$g$(x::'a))")] ssubst 1); by (etac spec 1); by (asm_simp_tac HOLCF_ss 1); by (rtac (iterate_Suc RS subst) 1); @@ -282,7 +282,7 @@ by (asm_simp_tac HOLCF_ss 1); qed "hoare_lemma22"; -(* -------- results about q for case (EX k. b1$(iterate k g x) ~= TT) ------- *) +(* -------- results about q for case (EX k. b1$(iterate k$g$x) ~= TT) ------- *) val hoare_lemma25 = (hoare_lemma8 RS (hoare_lemma24 RS mp) ); (* @@ -291,9 +291,9 @@ q$(iterate ?k3 g ?x1) = q$?x1" : thm *) -Goal "(EX n. b1$(iterate n g x)~=TT) ==>\ -\ k=Least(%n. b1$(iterate n g x) ~= TT) & b1$(iterate k g x) =FF \ -\ --> q$x = q$(iterate k g x)"; +Goal "(EX n. b1$(iterate n$g$x)~=TT) ==>\ +\ k=Least(%n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x) =FF \ +\ --> q$x = q$(iterate k$g$x)"; by (case_tac "k" 1); by (hyp_subst_tac 1); by (strip_tac 1); @@ -307,7 +307,7 @@ by (atac 1); by (rtac trans 1); by (rtac q_def3 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate nat g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate nat$g$x)")] ssubst 1); by (rtac (hoare_lemma8 RS spec RS mp) 1); by (atac 1); by (atac 1); @@ -316,8 +316,8 @@ qed "hoare_lemma26"; -Goal "(EX n. b1$(iterate n g x) ~= TT) ==>\ -\ k=Least(%n. b1$(iterate n g x)~=TT) & b1$(iterate k g x)=UU \ +Goal "(EX n. b1$(iterate n$g$x) ~= TT) ==>\ +\ k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU \ \ --> q$x = UU"; by (case_tac "k" 1); by (hyp_subst_tac 1); @@ -336,7 +336,7 @@ by (atac 1); by (rtac trans 1); by (rtac q_def3 1); -by (res_inst_tac [("s","TT"),("t","b1$(iterate nat g x)")] ssubst 1); +by (res_inst_tac [("s","TT"),("t","b1$(iterate nat$g$x)")] ssubst 1); by (rtac (hoare_lemma8 RS spec RS mp) 1); by (atac 1); by (atac 1); @@ -347,9 +347,9 @@ by (asm_simp_tac HOLCF_ss 1); qed "hoare_lemma27"; -(* ------- (ALL k. b1$(iterate k g x)=TT) ==> q o p = q ----- *) +(* ------- (ALL k. b1$(iterate k$g$x)=TT) ==> q o p = q ----- *) -Goal "(ALL k. b1$(iterate k g x)=TT) ==> q$(p$x) = q$x"; +Goal "(ALL k. b1$(iterate k$g$x)=TT) ==> q$(p$x) = q$x"; by (stac hoare_lemma16 1); by (atac 1); by (rtac (hoare_lemma19 RS disjE) 1); @@ -366,9 +366,9 @@ by (rtac refl 1); qed "hoare_lemma23"; -(* ------------ EX k. b1~(iterate k g x) ~= TT ==> q o p = q ----- *) +(* ------------ EX k. b1~(iterate k$g$x) ~= TT ==> q o p = q ----- *) -Goal "EX k. b1$(iterate k g x) ~= TT ==> q$(p$x) = q$x"; +Goal "EX k. b1$(iterate k$g$x) ~= TT ==> q$(p$x) = q$x"; by (rtac (hoare_lemma5 RS disjE) 1); by (atac 1); by (rtac refl 1); diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/ex/Loop.ML --- a/src/HOLCF/ex/Loop.ML Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/ex/Loop.ML Thu Nov 03 00:43:50 2005 +0100 @@ -28,7 +28,7 @@ by (Simp_tac 1); qed "while_unfold"; -Goal "ALL x. while$b$g$x = while$b$g$(iterate k (step$b$g) x)"; +Goal "ALL x. while$b$g$x = while$b$g$(iterate k$(step$b$g)$x)"; by (induct_tac "k" 1); by (simp_tac HOLCF_ss 1); by (rtac allI 1); @@ -54,7 +54,7 @@ qed "while_unfold2"; Goal "while$b$g$x = while$b$g$(step$b$g$x)"; -by (res_inst_tac [("s", "while$b$g$(iterate (Suc 0) (step$b$g) x)")] trans 1); +by (res_inst_tac [("s", "while$b$g$(iterate (Suc 0)$(step$b$g)$x)")] trans 1); by (rtac (while_unfold2 RS spec) 1); by (Simp_tac 1); qed "while_unfold3"; @@ -64,8 +64,8 @@ (* properties of while and iterations *) (* ------------------------------------------------------------------------- *) -Goal "[| EX y. b$y=FF; iterate k (step$b$g) x = UU |] \ -\ ==>iterate(Suc k) (step$b$g) x=UU"; +Goal "[| EX y. b$y=FF; iterate k$(step$b$g)$x = UU |] \ +\ ==>iterate(Suc k)$(step$b$g)$x=UU"; by (Simp_tac 1); by (rtac trans 1); by (rtac step_def2 1); @@ -76,34 +76,34 @@ by (asm_simp_tac HOLCF_ss 1); qed "loop_lemma1"; -Goal "[|EX y. b$y=FF;iterate (Suc k) (step$b$g) x ~=UU |]==>\ -\ iterate k (step$b$g) x ~=UU"; +Goal "[|EX y. b$y=FF;iterate (Suc k)$(step$b$g)$x ~=UU |]==>\ +\ iterate k$(step$b$g)$x ~=UU"; by (blast_tac (claset() addIs [loop_lemma1]) 1); qed "loop_lemma2"; Goal "[| ALL x. INV x & b$x=TT & g$x~=UU --> INV (g$x);\ \ EX y. b$y=FF; INV x |] \ -\ ==> iterate k (step$b$g) x ~=UU --> INV (iterate k (step$b$g) x)"; +\ ==> iterate k$(step$b$g)$x ~=UU --> INV (iterate k$(step$b$g)$x)"; by (induct_tac "k" 1); by (Asm_simp_tac 1); by (strip_tac 1); by (simp_tac (simpset() addsimps [step_def2]) 1); -by (res_inst_tac [("p","b$(iterate n (step$b$g) x)")] trE 1); +by (res_inst_tac [("p","b$(iterate n$(step$b$g)$x)")] trE 1); by (etac notE 1); by (asm_simp_tac (HOLCF_ss addsimps [step_def2] ) 1); by (asm_simp_tac HOLCF_ss 1); by (rtac mp 1); by (etac spec 1); by (asm_simp_tac (HOLCF_ss delsimps [iterate_Suc] addsimps [loop_lemma2] ) 1); -by (res_inst_tac [("s","iterate (Suc n) (step$b$g) x"), - ("t","g$(iterate n (step$b$g) x)")] ssubst 1); +by (res_inst_tac [("s","iterate (Suc n)$(step$b$g)$x"), + ("t","g$(iterate n$(step$b$g)$x)")] ssubst 1); by (atac 2); by (asm_simp_tac (HOLCF_ss addsimps [step_def2] ) 1); by (asm_simp_tac (HOLCF_ss delsimps [iterate_Suc] addsimps [loop_lemma2] ) 1); qed_spec_mp "loop_lemma3"; -Goal "ALL x. b$(iterate k (step$b$g) x)=FF --> while$b$g$x= iterate k (step$b$g) x"; +Goal "ALL x. b$(iterate k$(step$b$g)$x)=FF --> while$b$g$x= iterate k$(step$b$g)$x"; by (induct_tac "k" 1); by (Simp_tac 1); by (strip_tac 1); @@ -117,8 +117,8 @@ by (Asm_simp_tac 1); qed_spec_mp "loop_lemma4"; -Goal "ALL k. b$(iterate k (step$b$g) x) ~= FF ==>\ -\ ALL m. while$b$g$(iterate m (step$b$g) x)=UU"; +Goal "ALL k. b$(iterate k$(step$b$g)$x) ~= FF ==>\ +\ ALL m. while$b$g$(iterate m$(step$b$g)$x)=UU"; by (stac while_def2 1); by (rtac fix_ind 1); by (rtac (allI RS adm_all) 1); @@ -127,10 +127,10 @@ by (Simp_tac 1); by (rtac allI 1); by (Simp_tac 1); -by (res_inst_tac [("p","b$(iterate m (step$b$g) x)")] trE 1); +by (res_inst_tac [("p","b$(iterate m$(step$b$g)$x)")] trE 1); by (Asm_simp_tac 1); by (Asm_simp_tac 1); -by (res_inst_tac [("s","xa$(iterate (Suc m) (step$b$g) x)")] trans 1); +by (res_inst_tac [("s","xa$(iterate (Suc m)$(step$b$g)$x)")] trans 1); by (etac spec 2); by (rtac cfun_arg_cong 1); by (rtac trans 1); @@ -140,12 +140,12 @@ qed_spec_mp "loop_lemma5"; -Goal "ALL k. b$(iterate k (step$b$g) x) ~= FF ==> while$b$g$x=UU"; +Goal "ALL k. b$(iterate k$(step$b$g)$x) ~= FF ==> while$b$g$x=UU"; by (res_inst_tac [("t","x")] (iterate_0 RS subst) 1); by (etac (loop_lemma5) 1); qed "loop_lemma6"; -Goal "while$b$g$x ~= UU ==> EX k. b$(iterate k (step$b$g) x) = FF"; +Goal "while$b$g$x ~= UU ==> EX k. b$(iterate k$(step$b$g)$x) = FF"; by (blast_tac (claset() addIs [loop_lemma6]) 1); qed "loop_lemma7"; @@ -158,7 +158,7 @@ "[| (ALL y. INV y & b$y=TT & g$y ~= UU --> INV (g$y));\ \ (ALL y. INV y & b$y=FF --> Q y);\ \ INV x; while$b$g$x~=UU |] ==> Q (while$b$g$x)"; -by (res_inst_tac [("P","%k. b$(iterate k (step$b$g) x)=FF")] exE 1); +by (res_inst_tac [("P","%k. b$(iterate k$(step$b$g)$x)=FF")] exE 1); by (etac loop_lemma7 1); by (stac (loop_lemma4) 1); by (atac 1); diff -r a92b7c5133de -r 43000d7a017c src/HOLCF/ex/Stream.thy --- a/src/HOLCF/ex/Stream.thy Thu Nov 03 00:43:11 2005 +0100 +++ b/src/HOLCF/ex/Stream.thy Thu Nov 03 00:43:50 2005 +0100 @@ -37,7 +37,7 @@ constr_sconc' :: "nat => 'a stream => 'a stream => 'a stream" defs - i_rt_def: "i_rt == %i s. iterate i rt s" + i_rt_def: "i_rt == %i s. iterate i$rt$s" i_th_def: "i_th == %i s. ft$(i_rt i s)" sconc_def: "s1 ooo s2 == case #s1 of @@ -136,8 +136,8 @@ lemma surjectiv_scons: "(ft$s)&&(rt$s)=s" by (rule stream.casedist [of s], auto) -lemma monofun_rt_mult: "x << s ==> iterate i rt x << iterate i rt s" -by (insert monofun_iterate2 [of i "rt"], simp add: monofun_def, auto) +lemma monofun_rt_mult: "x << s ==> iterate i$rt$x << iterate i$rt$s" +by (rule monofun_cfun_arg) @@ -152,7 +152,7 @@ lemma stream_reach2: "(LUB i. stream_take i$s) = s" apply (insert stream.reach [of s], erule subst) back apply (simp add: fix_def2 stream.take_def) -apply (insert contlub_cfun_fun [of "%i. iterate i stream_copy UU" s,THEN sym]) +apply (insert contlub_cfun_fun [of "%i. iterate i$stream_copy$UU" s,THEN sym]) by (simp add: chain_iterate) lemma chain_stream_take: "chain (%i. stream_take i$s)" @@ -470,10 +470,10 @@ apply (drule slen_mono_lemma, auto) by (simp add: slen_def) -lemma iterate_lemma: "F$(iterate n F x) = iterate n F (F$x)" +lemma iterate_lemma: "F$(iterate n$F$x) = iterate n$F$(F$x)" by (insert iterate_Suc2 [of n F x], auto) -lemma slen_rt_mult [rule_format]: "!x. Fin (i + j) <= #x --> Fin j <= #(iterate i rt x)" +lemma slen_rt_mult [rule_format]: "!x. Fin (i + j) <= #x --> Fin j <= #(iterate i$rt$x)" apply (induct_tac i, auto) apply (case_tac "x=UU", auto) apply (simp add: inat_defs) @@ -970,11 +970,8 @@ "chain Y ==> (LUB i. x ooo Y i) = (x ooo (LUB i. Y i))" apply (case_tac "#x=Infty") apply (simp add: sconc_def) - prefer 2 - apply (drule finite_lub_sconc,auto simp add: slen_infinite) -apply (simp add: slen_def) -apply (insert lub_const [of x] unique_lub [of _ x _]) -by (auto simp add: lub) +apply (drule finite_lub_sconc,auto simp add: slen_infinite) +done lemma contlub_sconc: "contlub (%y. x ooo y)" by (rule contlubI, insert contlub_sconc_lemma [of _ x], simp)