# HG changeset patch # User nipkow # Date 1404745271 -7200 # Node ID 439f881c8744388b94d73d7556107c5d514ca8d5 # Parent 5e83df79eaa0d4bd3f723f496c2ce4af42a32e1b added lemma diff -r 5e83df79eaa0 -r 439f881c8744 src/HOL/Library/Tree.thy --- a/src/HOL/Library/Tree.thy Mon Jul 07 16:06:46 2014 +0200 +++ b/src/HOL/Library/Tree.thy Mon Jul 07 17:01:11 2014 +0200 @@ -14,6 +14,9 @@ lemma neq_Leaf_iff: "(t \ Leaf) = (\l a r. t = Node l a r)" by (cases t) auto +lemma set_tree_Node2: "set_tree(Node l x r) = insert x (set_tree l \ set_tree r)" +by auto + fun subtrees :: "'a tree \ 'a tree set" where "subtrees Leaf = {Leaf}" | "subtrees (Node l a r) = insert (Node l a r) (subtrees l \ subtrees r)"