# HG changeset patch # User berghofe # Date 1028550462 -7200 # Node ID 43c9ec498291f4fdf1f33e025e6102f53977cac2 # Parent 3196f93030bbcbf00da4d8786e67ba4df2fef43a - Converted to new theory format - Moved NatDef stuff to theory Nat diff -r 3196f93030bb -r 43c9ec498291 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Mon Aug 05 14:26:54 2002 +0200 +++ b/src/HOL/Nat.thy Mon Aug 05 14:27:42 2002 +0200 @@ -6,43 +6,1076 @@ and * (for div, mod and dvd, see theory Divides). *) -Nat = NatDef + +header {* Natural numbers *} + +theory Nat = Wellfounded_Recursion: + +subsection {* Type @{text ind} *} + +typedecl ind + +consts + Zero_Rep :: ind + Suc_Rep :: "ind => ind" + +axioms + -- {* the axiom of infinity in 2 parts *} + inj_Suc_Rep: "inj Suc_Rep" + Suc_Rep_not_Zero_Rep: "Suc_Rep x ~= Zero_Rep" + + +subsection {* Type nat *} + +text {* Type definition *} + +consts + Nat :: "ind set" + +inductive Nat +intros + Zero_RepI: "Zero_Rep : Nat" + Suc_RepI: "i : Nat ==> Suc_Rep i : Nat" + +global + +typedef (open Nat) + nat = "Nat" by (rule exI, rule Nat.Zero_RepI) + +instance nat :: ord .. +instance nat :: zero .. +instance nat :: one .. + + +text {* Abstract constants and syntax *} + +consts + Suc :: "nat => nat" + pred_nat :: "(nat * nat) set" + +local + +defs + Zero_nat_def: "0 == Abs_Nat Zero_Rep" + Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))" + One_nat_def [simp]: "1 == Suc 0" + + -- {* nat operations *} + pred_nat_def: "pred_nat == {(m, n). n = Suc m}" + + less_def: "m < n == (m, n) : trancl pred_nat" + + le_def: "m <= (n::nat) == ~ (n < m)" + + +text {* Induction *} -(* type "nat" is a wellfounded linear order, and a datatype *) +theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n" + apply (unfold Zero_nat_def Suc_def) + apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *} + apply (erule Rep_Nat [THEN Nat.induct]) + apply (rules elim: Abs_Nat_inverse [THEN subst]) + done + + +text {* Isomorphisms: @{text Abs_Nat} and @{text Rep_Nat} *} + +lemma inj_Rep_Nat: "inj Rep_Nat" + apply (rule inj_inverseI) + apply (rule Rep_Nat_inverse) + done + +lemma inj_on_Abs_Nat: "inj_on Abs_Nat Nat" + apply (rule inj_on_inverseI) + apply (erule Abs_Nat_inverse) + done + +text {* Distinctness of constructors *} + +lemma Suc_not_Zero [iff]: "Suc m ~= 0" + apply (unfold Zero_nat_def Suc_def) + apply (rule inj_on_Abs_Nat [THEN inj_on_contraD]) + apply (rule Suc_Rep_not_Zero_Rep) + apply (rule Rep_Nat Nat.Suc_RepI Nat.Zero_RepI)+ + done + +lemma Zero_not_Suc [iff]: "0 ~= Suc m" + by (rule not_sym, rule Suc_not_Zero not_sym) + +lemma Suc_neq_Zero: "Suc m = 0 ==> R" + by (rule notE, rule Suc_not_Zero) + +lemma Zero_neq_Suc: "0 = Suc m ==> R" + by (rule Suc_neq_Zero, erule sym) + +text {* Injectiveness of @{term Suc} *} + +lemma inj_Suc: "inj Suc" + apply (unfold Suc_def) + apply (rule injI) + apply (drule inj_on_Abs_Nat [THEN inj_onD]) + apply (rule Rep_Nat Nat.Suc_RepI)+ + apply (drule inj_Suc_Rep [THEN injD]) + apply (erule inj_Rep_Nat [THEN injD]) + done + +lemma Suc_inject: "Suc x = Suc y ==> x = y" + by (rule inj_Suc [THEN injD]) + +lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)" + apply (rule iffI) + apply (erule Suc_inject) + apply (erule arg_cong) + done + +lemma nat_not_singleton: "(ALL x. x = (0::nat)) = False" + by auto + +text {* @{typ nat} is a datatype *} rep_datatype nat - distinct Suc_not_Zero, Zero_not_Suc - inject Suc_Suc_eq - induct nat_induct + distinct Suc_not_Zero Zero_not_Suc + inject Suc_Suc_eq + induction nat_induct + +lemma n_not_Suc_n: "n ~= Suc n" + by (induct n) simp_all + +lemma Suc_n_not_n: "Suc t ~= t" + by (rule not_sym, rule n_not_Suc_n) + +text {* A special form of induction for reasoning + about @{term "m < n"} and @{term "m - n"} *} + +theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> + (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" + apply (rule_tac x = "m" in spec) + apply (induct_tac n) + prefer 2 + apply (rule allI) + apply (induct_tac x) + apply rules+ + done + +subsection {* Basic properties of "less than" *} + +lemma wf_pred_nat: "wf pred_nat" + apply (unfold wf_def pred_nat_def) + apply clarify + apply (induct_tac x) + apply blast+ + done + +lemma wf_less: "wf {(x, y::nat). x < y}" + apply (unfold less_def) + apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset]) + apply blast + done + +lemma less_eq: "((m, n) : pred_nat^+) = (m < n)" + apply (unfold less_def) + apply (rule refl) + done + +subsubsection {* Introduction properties *} + +lemma less_trans: "i < j ==> j < k ==> i < (k::nat)" + apply (unfold less_def) + apply (rule trans_trancl [THEN transD]) + apply assumption+ + done + +lemma lessI [iff]: "n < Suc n" + apply (unfold less_def pred_nat_def) + apply (simp add: r_into_trancl) + done + +lemma less_SucI: "i < j ==> i < Suc j" + apply (rule less_trans) + apply assumption + apply (rule lessI) + done + +lemma zero_less_Suc [iff]: "0 < Suc n" + apply (induct n) + apply (rule lessI) + apply (erule less_trans) + apply (rule lessI) + done + +subsubsection {* Elimination properties *} + +lemma less_not_sym: "n < m ==> ~ m < (n::nat)" + apply (unfold less_def) + apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym]) + done + +lemma less_asym: + assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P + apply (rule contrapos_np) + apply (rule less_not_sym) + apply (rule h1) + apply (erule h2) + done + +lemma less_not_refl: "~ n < (n::nat)" + apply (unfold less_def) + apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl]) + done + +lemma less_irrefl [elim!]: "(n::nat) < n ==> R" + by (rule notE, rule less_not_refl) + +lemma less_not_refl2: "n < m ==> m ~= (n::nat)" by blast + +lemma less_not_refl3: "(s::nat) < t ==> s ~= t" + by (rule not_sym, rule less_not_refl2) + +lemma lessE: + assumes major: "i < k" + and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" + shows P + apply (rule major [unfolded less_def pred_nat_def, THEN tranclE]) + apply simp_all + apply (erule p1) + apply (rule p2) + apply (simp add: less_def pred_nat_def) + apply assumption + done + +lemma not_less0 [iff]: "~ n < (0::nat)" + by (blast elim: lessE) + +lemma less_zeroE: "(n::nat) < 0 ==> R" + by (rule notE, rule not_less0) + +lemma less_SucE: assumes major: "m < Suc n" + and less: "m < n ==> P" and eq: "m = n ==> P" shows P + apply (rule major [THEN lessE]) + apply (rule eq) + apply blast + apply (rule less) + apply blast + done + +lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" + by (blast elim!: less_SucE intro: less_trans) + +lemma less_one [iff]: "(n < (1::nat)) = (n = 0)" + by (simp add: less_Suc_eq) + +lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" + by (simp add: less_Suc_eq) + +lemma Suc_mono: "m < n ==> Suc m < Suc n" + by (induct n) (fast elim: less_trans lessE)+ + +text {* "Less than" is a linear ordering *} +lemma less_linear: "m < n | m = n | n < (m::nat)" + apply (induct_tac m) + apply (induct_tac n) + apply (rule refl [THEN disjI1, THEN disjI2]) + apply (rule zero_less_Suc [THEN disjI1]) + apply (blast intro: Suc_mono less_SucI elim: lessE) + done + +lemma nat_neq_iff: "((m::nat) ~= n) = (m < n | n < m)" + using less_linear by blast + +lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" + and eqCase: "m = n ==> P n m" and lessCase: "n P n m" + shows "P n m" + apply (rule less_linear [THEN disjE]) + apply (erule_tac [2] disjE) + apply (erule lessCase) + apply (erule sym [THEN eqCase]) + apply (erule major) + done + + +subsubsection {* Inductive (?) properties *} + +lemma Suc_lessI: "m < n ==> Suc m ~= n ==> Suc m < n" + apply (simp add: nat_neq_iff) + apply (blast elim!: less_irrefl less_SucE elim: less_asym) + done + +lemma Suc_lessD: "Suc m < n ==> m < n" + apply (induct n) + apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+ + done + +lemma Suc_lessE: assumes major: "Suc i < k" + and minor: "!!j. i < j ==> k = Suc j ==> P" shows P + apply (rule major [THEN lessE]) + apply (erule lessI [THEN minor]) + apply (erule Suc_lessD [THEN minor]) + apply assumption + done + +lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" + by (blast elim: lessE dest: Suc_lessD) -instance nat :: order (le_refl,le_trans,le_anti_sym,nat_less_le) -instance nat :: linorder (nat_le_linear) -instance nat :: wellorder (wf_less) +lemma Suc_less_eq [iff]: "(Suc m < Suc n) = (m < n)" + apply (rule iffI) + apply (erule Suc_less_SucD) + apply (erule Suc_mono) + done + +lemma less_trans_Suc: + assumes le: "i < j" shows "j < k ==> Suc i < k" + apply (induct k) + apply simp_all + apply (insert le) + apply (simp add: less_Suc_eq) + apply (blast dest: Suc_lessD) + done + +text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *} +lemma not_less_eq: "(~ m < n) = (n < Suc m)" + apply (rule_tac m = "m" and n = "n" in diff_induct) + apply simp_all + done + +text {* Complete induction, aka course-of-values induction *} +lemma nat_less_induct: + assumes prem: "!!n. ALL m::nat. m < n --> P m ==> P n" shows "P n" + apply (rule_tac a=n in wf_induct) + apply (rule wf_pred_nat [THEN wf_trancl]) + apply (rule prem) + apply (unfold less_def) + apply assumption + done + +subsection {* Properties of "less or equal than" *} + +text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *} +lemma less_Suc_eq_le: "(m < Suc n) = (m <= n)" + by (unfold le_def, rule not_less_eq [symmetric]) + +lemma le_imp_less_Suc: "m <= n ==> m < Suc n" + by (rule less_Suc_eq_le [THEN iffD2]) + +lemma le0 [iff]: "(0::nat) <= n" + by (unfold le_def, rule not_less0) + +lemma Suc_n_not_le_n: "~ Suc n <= n" + by (simp add: le_def) + +lemma le_0_eq [iff]: "((i::nat) <= 0) = (i = 0)" + by (induct i) (simp_all add: le_def) + +lemma le_Suc_eq: "(m <= Suc n) = (m <= n | m = Suc n)" + by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq) + +lemma le_SucE: "m <= Suc n ==> (m <= n ==> R) ==> (m = Suc n ==> R) ==> R" + by (drule le_Suc_eq [THEN iffD1], rules+) + +lemma leI: "~ n < m ==> m <= (n::nat)" by (simp add: le_def) + +lemma leD: "m <= n ==> ~ n < (m::nat)" + by (simp add: le_def) + +lemmas leE = leD [elim_format] + +lemma not_less_iff_le: "(~ n < m) = (m <= (n::nat))" + by (blast intro: leI elim: leE) + +lemma not_leE: "~ m <= n ==> n<(m::nat)" + by (simp add: le_def) + +lemma not_le_iff_less: "(~ n <= m) = (m < (n::nat))" + by (simp add: le_def) + +lemma Suc_leI: "m < n ==> Suc(m) <= n" + apply (simp add: le_def less_Suc_eq) + apply (blast elim!: less_irrefl less_asym) + done -- {* formerly called lessD *} + +lemma Suc_leD: "Suc(m) <= n ==> m <= n" + by (simp add: le_def less_Suc_eq) + +text {* Stronger version of @{text Suc_leD} *} +lemma Suc_le_lessD: "Suc m <= n ==> m < n" + apply (simp add: le_def less_Suc_eq) + using less_linear + apply blast + done + +lemma Suc_le_eq: "(Suc m <= n) = (m < n)" + by (blast intro: Suc_leI Suc_le_lessD) + +lemma le_SucI: "m <= n ==> m <= Suc n" + by (unfold le_def) (blast dest: Suc_lessD) + +lemma less_imp_le: "m < n ==> m <= (n::nat)" + by (unfold le_def) (blast elim: less_asym) + +text {* For instance, @{text "(Suc m < Suc n) = (Suc m <= n) = (m < n)"} *} +lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq + + +text {* Equivalence of @{term "m <= n"} and @{term "m < n | m = n"} *} + +lemma le_imp_less_or_eq: "m <= n ==> m < n | m = (n::nat)" + apply (unfold le_def) + using less_linear + apply (blast elim: less_irrefl less_asym) + done + +lemma less_or_eq_imp_le: "m < n | m = n ==> m <= (n::nat)" + apply (unfold le_def) + using less_linear + apply (blast elim!: less_irrefl elim: less_asym) + done + +lemma le_eq_less_or_eq: "(m <= (n::nat)) = (m < n | m=n)" + by (rules intro: less_or_eq_imp_le le_imp_less_or_eq) + +text {* Useful with @{text Blast}. *} +lemma eq_imp_le: "(m::nat) = n ==> m <= n" + by (rule less_or_eq_imp_le, rule disjI2) + +lemma le_refl: "n <= (n::nat)" + by (simp add: le_eq_less_or_eq) + +lemma le_less_trans: "[| i <= j; j < k |] ==> i < (k::nat)" + by (blast dest!: le_imp_less_or_eq intro: less_trans) + +lemma less_le_trans: "[| i < j; j <= k |] ==> i < (k::nat)" + by (blast dest!: le_imp_less_or_eq intro: less_trans) + +lemma le_trans: "[| i <= j; j <= k |] ==> i <= (k::nat)" + by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans) + +lemma le_anti_sym: "[| m <= n; n <= m |] ==> m = (n::nat)" + -- {* @{text order_less_irrefl} could make this proof fail *} + by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym) + +lemma Suc_le_mono [iff]: "(Suc n <= Suc m) = (n <= m)" + by (simp add: le_simps) + +text {* Axiom @{text order_less_le} of class @{text order}: *} +lemma nat_less_le: "((m::nat) < n) = (m <= n & m ~= n)" + by (simp add: le_def nat_neq_iff) (blast elim!: less_asym) + +lemma le_neq_implies_less: "(m::nat) <= n ==> m ~= n ==> m < n" + by (rule iffD2, rule nat_less_le, rule conjI) + +text {* Axiom @{text linorder_linear} of class @{text linorder}: *} +lemma nat_le_linear: "(m::nat) <= n | n <= m" + apply (simp add: le_eq_less_or_eq) + using less_linear + apply blast + done + +lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" + by (blast elim!: less_SucE) + + +text {* + Rewrite @{term "n < Suc m"} to @{term "n = m"} + if @{term "~ n < m"} or @{term "m <= n"} hold. + Not suitable as default simprules because they often lead to looping +*} +lemma le_less_Suc_eq: "m <= n ==> (n < Suc m) = (n = m)" + by (rule not_less_less_Suc_eq, rule leD) + +lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq + + +text {* + Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. + No longer added as simprules (they loop) + but via @{text reorient_simproc} in Bin +*} + +text {* Polymorphic, not just for @{typ nat} *} +lemma zero_reorient: "(0 = x) = (x = 0)" + by auto + +lemma one_reorient: "(1 = x) = (x = 1)" + by auto + +text {* Type {@typ nat} is a wellfounded linear order *} + +instance nat :: order by (intro_classes, + (assumption | rule le_refl le_trans le_anti_sym nat_less_le)+) +instance nat :: linorder by (intro_classes, rule nat_le_linear) +instance nat :: wellorder by (intro_classes, rule wf_less) + +subsection {* Arithmetic operators *} axclass power < type consts - power :: ['a::power, nat] => 'a (infixr "^" 80) + power :: "('a::power) => nat => 'a" (infixr "^" 80) -(* arithmetic operators + - and * *) +text {* arithmetic operators @{text "+ -"} and @{text "*"} *} + +instance nat :: plus .. +instance nat :: minus .. +instance nat :: times .. +instance nat :: power .. -instance - nat :: {plus, minus, times, power} +text {* size of a datatype value; overloaded *} +consts size :: "'a => nat" -(* size of a datatype value; overloaded *) -consts size :: 'a => nat +primrec + add_0: "0 + n = n" + add_Suc: "Suc m + n = Suc (m + n)" + +primrec + diff_0: "m - 0 = m" + diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" primrec - add_0 "0 + n = n" - add_Suc "Suc m + n = Suc(m + n)" + mult_0: "0 * n = 0" + mult_Suc: "Suc m * n = n + (m * n)" + +text {* These 2 rules ease the use of primitive recursion. NOTE USE OF @{text "=="} *} +lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" + by simp + +lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" + by simp + +lemma not0_implies_Suc: "n ~= 0 ==> EX m. n = Suc m" + by (case_tac n) simp_all + +lemma gr_implies_not0: "!!n::nat. m n ~= 0" + by (case_tac n) simp_all + +lemma neq0_conv [iff]: "!!n::nat. (n ~= 0) = (0 < n)" + by (case_tac n) simp_all + +text {* This theorem is useful with @{text blast} *} +lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" + by (rule iffD1, rule neq0_conv, rules) + +lemma gr0_conv_Suc: "(0 < n) = (EX m. n = Suc m)" + by (fast intro: not0_implies_Suc) + +lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)" + apply (rule iffI) + apply (rule ccontr) + apply simp_all + done + +lemma Suc_le_D: "(Suc n <= m') ==> (? m. m' = Suc m)" + by (induct m') simp_all + +text {* Useful in certain inductive arguments *} +lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (EX j. m = Suc j & j < n))" + by (case_tac m) simp_all + +lemma nat_induct2: "P 0 ==> P (Suc 0) ==> (!!k. P k ==> P (Suc (Suc k))) ==> P n" + apply (rule nat_less_induct) + apply (case_tac n) + apply (case_tac [2] nat) + apply (blast intro: less_trans)+ + done + +subsection {* @{text LEAST} theorems for type @{typ nat} by specialization *} + +lemmas LeastI = wellorder_LeastI +lemmas Least_le = wellorder_Least_le +lemmas not_less_Least = wellorder_not_less_Least + +lemma Least_Suc: "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" + apply (case_tac "n") + apply auto + apply (frule LeastI) + apply (drule_tac P = "%x. P (Suc x) " in LeastI) + apply (subgoal_tac " (LEAST x. P x) <= Suc (LEAST x. P (Suc x))") + apply (erule_tac [2] Least_le) + apply (case_tac "LEAST x. P x") + apply auto + apply (drule_tac P = "%x. P (Suc x) " in Least_le) + apply (blast intro: order_antisym) + done + +lemma Least_Suc2: "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" + apply (erule (1) Least_Suc [THEN ssubst]) + apply simp + done + + +subsection {* @{term min} and @{term max} *} + +lemma min_0L [simp]: "min 0 n = (0::nat)" + by (rule min_leastL) simp + +lemma min_0R [simp]: "min n 0 = (0::nat)" + by (rule min_leastR) simp + +lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" + by (simp add: min_of_mono) + +lemma max_0L [simp]: "max 0 n = (n::nat)" + by (rule max_leastL) simp + +lemma max_0R [simp]: "max n 0 = (n::nat)" + by (rule max_leastR) simp + +lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" + by (simp add: max_of_mono) + + +subsection {* Basic rewrite rules for the arithmetic operators *} + +text {* Difference *} + +lemma diff_0_eq_0 [simp]: "0 - n = (0::nat)" + by (induct_tac n) simp_all + +lemma diff_Suc_Suc [simp]: "Suc(m) - Suc(n) = m - n" + by (induct_tac n) simp_all + + +text {* + Could be (and is, below) generalized in various ways + However, none of the generalizations are currently in the simpset, + and I dread to think what happens if I put them in +*} +lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n" + by (simp split add: nat.split) + +declare diff_Suc [simp del] + + +subsection {* Addition *} + +lemma add_0_right [simp]: "m + 0 = (m::nat)" + by (induct m) simp_all + +lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" + by (induct m) simp_all + + +text {* Associative law for addition *} +lemma add_assoc: "(m + n) + k = m + ((n + k)::nat)" + by (induct m) simp_all + +text {* Commutative law for addition *} +lemma add_commute: "m + n = n + (m::nat)" + by (induct m) simp_all + +lemma add_left_commute: "x + (y + z) = y + ((x + z)::nat)" + apply (rule mk_left_commute [of "op +"]) + apply (rule add_assoc) + apply (rule add_commute) + done + +text {* Addition is an AC-operator *} +lemmas add_ac = add_assoc add_commute add_left_commute + +lemma add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" + by (induct k) simp_all + +lemma add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" + by (induct k) simp_all + +lemma add_left_cancel_le [simp]: "(k + m <= k + n) = (m<=(n::nat))" + by (induct k) simp_all + +lemma add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" + by (induct k) simp_all + +text {* Reasoning about @{text "m + 0 = 0"}, etc. *} + +lemma add_is_0 [iff]: "!!m::nat. (m + n = 0) = (m = 0 & n = 0)" + by (case_tac m) simp_all + +lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" + by (case_tac m) simp_all + +lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" + by (rule trans, rule eq_commute, rule add_is_1) + +lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)" + by (simp del: neq0_conv add: neq0_conv [symmetric]) + +lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0" + apply (drule add_0_right [THEN ssubst]) + apply (simp add: add_assoc del: add_0_right) + done + +subsection {* Additional theorems about "less than" *} + +text {* Deleted @{text less_natE}; instead use @{text "less_imp_Suc_add RS exE"} *} +lemma less_imp_Suc_add: "m < n ==> (EX k. n = Suc (m + k))" + apply (induct n) + apply (simp_all add: order_le_less) + apply (blast elim!: less_SucE intro!: add_0_right [symmetric] add_Suc_right [symmetric]) + done + +lemma le_add2: "n <= ((m + n)::nat)" + apply (induct m) + apply simp_all + apply (erule le_SucI) + done + +lemma le_add1: "n <= ((n + m)::nat)" + apply (simp add: add_ac) + apply (rule le_add2) + done + +lemma less_add_Suc1: "i < Suc (i + m)" + by (rule le_less_trans, rule le_add1, rule lessI) + +lemma less_add_Suc2: "i < Suc (m + i)" + by (rule le_less_trans, rule le_add2, rule lessI) + +lemma less_iff_Suc_add: "(m < n) = (EX k. n = Suc (m + k))" + by (rules intro!: less_add_Suc1 less_imp_Suc_add) + + +lemma trans_le_add1: "(i::nat) <= j ==> i <= j + m" + by (rule le_trans, assumption, rule le_add1) + +lemma trans_le_add2: "(i::nat) <= j ==> i <= m + j" + by (rule le_trans, assumption, rule le_add2) + +lemma trans_less_add1: "(i::nat) < j ==> i < j + m" + by (rule less_le_trans, assumption, rule le_add1) + +lemma trans_less_add2: "(i::nat) < j ==> i < m + j" + by (rule less_le_trans, assumption, rule le_add2) + +lemma add_lessD1: "i + j < (k::nat) ==> i < k" + apply (induct j) + apply simp_all + apply (blast dest: Suc_lessD) + done + +lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" + apply (rule notI) + apply (erule add_lessD1 [THEN less_irrefl]) + done + +lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" + by (simp add: add_commute not_add_less1) + +lemma add_leD1: "m + k <= n ==> m <= (n::nat)" + by (induct k) (simp_all add: le_simps) + +lemma add_leD2: "m + k <= n ==> k <= (n::nat)" + apply (simp add: add_commute) + apply (erule add_leD1) + done + +lemma add_leE: "(m::nat) + k <= n ==> (m <= n ==> k <= n ==> R) ==> R" + by (blast dest: add_leD1 add_leD2) + +text {* needs @{text "!!k"} for @{text add_ac} to work *} +lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" + by (force simp del: add_Suc_right + simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) + + +subsection {* Monotonicity of Addition *} + +text {* strict, in 1st argument *} +lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" + by (induct k) simp_all + +text {* strict, in both arguments *} +lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" + apply (rule add_less_mono1 [THEN less_trans]) + apply assumption+ + apply (induct_tac j) + apply simp_all + done + +text {* A [clumsy] way of lifting @{text "<"} + monotonicity to @{text "<="} monotonicity *} +lemma less_mono_imp_le_mono: + assumes lt_mono: "!!i j::nat. i < j ==> f i < f j" + and le: "i <= j" shows "f i <= ((f j)::nat)" using le + apply (simp add: order_le_less) + apply (blast intro!: lt_mono) + done + +text {* non-strict, in 1st argument *} +lemma add_le_mono1: "i <= j ==> i + k <= j + (k::nat)" + apply (rule_tac f = "%j. j + k" in less_mono_imp_le_mono) + apply (erule add_less_mono1) + apply assumption + done -primrec - diff_0 "m - 0 = m" - diff_Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" +text {* non-strict, in both arguments *} +lemma add_le_mono: "[| i <= j; k <= l |] ==> i + k <= j + (l::nat)" + apply (erule add_le_mono1 [THEN le_trans]) + apply (simp add: add_commute) + done + + +subsection {* Multiplication *} + +text {* right annihilation in product *} +lemma mult_0_right [simp]: "(m::nat) * 0 = 0" + by (induct m) simp_all + +text {* right successor law for multiplication *} +lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" + by (induct m) (simp_all add: add_ac) + +lemma mult_1: "(1::nat) * n = n" by simp + +lemma mult_1_right: "n * (1::nat) = n" by simp + +text {* Commutative law for multiplication *} +lemma mult_commute: "m * n = n * (m::nat)" + by (induct m) simp_all + +text {* addition distributes over multiplication *} +lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" + by (induct m) (simp_all add: add_ac) + +lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" + by (induct m) (simp_all add: add_ac) + +text {* Associative law for multiplication *} +lemma mult_assoc: "(m * n) * k = m * ((n * k)::nat)" + by (induct m) (simp_all add: add_mult_distrib) + +lemma mult_left_commute: "x * (y * z) = y * ((x * z)::nat)" + apply (rule mk_left_commute [of "op *"]) + apply (rule mult_assoc) + apply (rule mult_commute) + done + +lemmas mult_ac = mult_assoc mult_commute mult_left_commute + +lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" + apply (induct_tac m) + apply (induct_tac [2] n) + apply simp_all + done + + +subsection {* Difference *} + +lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0" + by (induct m) simp_all + +text {* Addition is the inverse of subtraction: + if @{term "n <= m"} then @{term "n + (m - n) = m"}. *} +lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" + by (induct m n rule: diff_induct) simp_all + +lemma le_add_diff_inverse [simp]: "n <= m ==> n + (m - n) = (m::nat)" + by (simp add: add_diff_inverse not_less_iff_le) + +lemma le_add_diff_inverse2 [simp]: "n <= m ==> (m - n) + n = (m::nat)" + by (simp add: le_add_diff_inverse add_commute) + + +subsection {* More results about difference *} + +lemma Suc_diff_le: "n <= m ==> Suc m - n = Suc (m - n)" + by (induct m n rule: diff_induct) simp_all + +lemma diff_less_Suc: "m - n < Suc m" + apply (induct m n rule: diff_induct) + apply (erule_tac [3] less_SucE) + apply (simp_all add: less_Suc_eq) + done + +lemma diff_le_self [simp]: "m - n <= (m::nat)" + by (induct m n rule: diff_induct) (simp_all add: le_SucI) + +lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" + by (rule le_less_trans, rule diff_le_self) + +lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" + by (induct i j rule: diff_induct) simp_all + +lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" + by (simp add: diff_diff_left) + +lemma diff_Suc_less [simp]: "0 n - Suc i < n" + apply (case_tac "n") + apply safe + apply (simp add: le_simps) + done + +text {* This and the next few suggested by Florian Kammueller *} +lemma diff_commute: "(i::nat) - j - k = i - k - j" + by (simp add: diff_diff_left add_commute) + +lemma diff_add_assoc: "k <= (j::nat) ==> (i + j) - k = i + (j - k)" + by (induct j k rule: diff_induct) simp_all + +lemma diff_add_assoc2: "k <= (j::nat) ==> (j + i) - k = (j - k) + i" + by (simp add: add_commute diff_add_assoc) + +lemma diff_add_inverse: "(n + m) - n = (m::nat)" + by (induct n) simp_all + +lemma diff_add_inverse2: "(m + n) - n = (m::nat)" + by (simp add: diff_add_assoc) + +lemma le_imp_diff_is_add: "i <= (j::nat) ==> (j - i = k) = (j = k + i)" + apply safe + apply (simp_all add: diff_add_inverse2) + done + +lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m <= n)" + by (induct m n rule: diff_induct) simp_all + +lemma diff_is_0_eq' [simp]: "m <= n ==> (m::nat) - n = 0" + by (rule iffD2, rule diff_is_0_eq) + +lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" + by (induct m n rule: diff_induct) simp_all + +lemma less_imp_add_positive: "i < j ==> EX k::nat. 0 < k & i + k = j" + apply (rule_tac x = "j - i" in exI) + apply (simp (no_asm_simp) add: add_diff_inverse less_not_sym) + done -primrec - mult_0 "0 * n = 0" - mult_Suc "Suc m * n = n + (m * n)" +lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" + apply (induct k i rule: diff_induct) + apply (simp_all (no_asm)) + apply rules + done + +lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" + apply (rule diff_self_eq_0 [THEN subst]) + apply (rule zero_induct_lemma) + apply rules+ + done + +lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" + by (induct k) simp_all + +lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" + by (simp add: diff_cancel add_commute) + +lemma diff_add_0: "n - (n + m) = (0::nat)" + by (induct n) simp_all + + +text {* Difference distributes over multiplication *} + +lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" + by (induct m n rule: diff_induct) (simp_all add: diff_cancel) + +lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" + by (simp add: diff_mult_distrib mult_commute [of k]) + -- {* NOT added as rewrites, since sometimes they are used from right-to-left *} + +lemmas nat_distrib = + add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 + + +subsection {* Monotonicity of Multiplication *} + +lemma mult_le_mono1: "i <= (j::nat) ==> i * k <= j * k" + by (induct k) (simp_all add: add_le_mono) + +lemma mult_le_mono2: "i <= (j::nat) ==> k * i <= k * j" + apply (drule mult_le_mono1) + apply (simp add: mult_commute) + done + +text {* @{text "<="} monotonicity, BOTH arguments *} +lemma mult_le_mono: "i <= (j::nat) ==> k <= l ==> i * k <= j * l" + apply (erule mult_le_mono1 [THEN le_trans]) + apply (erule mult_le_mono2) + done + +text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *} +lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j" + apply (erule_tac m1 = "0" in less_imp_Suc_add [THEN exE]) + apply simp + apply (induct_tac x) + apply (simp_all add: add_less_mono) + done + +lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" + by (drule mult_less_mono2) (simp_all add: mult_commute) + +lemma zero_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" + apply (induct m) + apply (case_tac [2] n) + apply simp_all + done + +lemma one_le_mult_iff [simp]: "(Suc 0 <= m * n) = (1 <= m & 1 <= n)" + apply (induct m) + apply (case_tac [2] n) + apply simp_all + done + +lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)" + apply (induct_tac m) + apply simp + apply (induct_tac n) + apply simp + apply fastsimp + done + +lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)" + apply (rule trans) + apply (rule_tac [2] mult_eq_1_iff) + apply fastsimp + done + +lemma mult_less_cancel2: "((m::nat) * k < n * k) = (0 < k & m < n)" + apply (safe intro!: mult_less_mono1) + apply (case_tac k) + apply auto + apply (simp del: le_0_eq add: linorder_not_le [symmetric]) + apply (blast intro: mult_le_mono1) + done + +lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" + by (simp add: mult_less_cancel2 mult_commute [of k]) + +declare mult_less_cancel2 [simp] + +lemma mult_le_cancel1 [simp]: "(k * (m::nat) <= k * n) = (0 < k --> m <= n)" + apply (simp add: linorder_not_less [symmetric]) + apply auto + done + +lemma mult_le_cancel2 [simp]: "((m::nat) * k <= n * k) = (0 < k --> m <= n)" + apply (simp add: linorder_not_less [symmetric]) + apply auto + done + +lemma mult_cancel2: "(m * k = n * k) = (m = n | (k = (0::nat)))" + apply (cut_tac less_linear) + apply safe + apply auto + apply (drule mult_less_mono1, assumption, simp)+ + done + +lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" + by (simp add: mult_cancel2 mult_commute [of k]) + +declare mult_cancel2 [simp] + +lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" + by (subst mult_less_cancel1) simp + +lemma Suc_mult_le_cancel1: "(Suc k * m <= Suc k * n) = (m <= n)" + by (subst mult_le_cancel1) simp + +lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" + by (subst mult_cancel1) simp + + +text {* Lemma for @{text gcd} *} +lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" + apply (drule sym) + apply (rule disjCI) + apply (rule nat_less_cases, erule_tac [2] _) + apply (fastsimp elim!: less_SucE) + apply (fastsimp dest: mult_less_mono2) + done end