# HG changeset patch # User huffman # Date 1321357189 -3600 # Node ID 44790ec65f70ccc964ca754b22e7c4690dcf5b0c # Parent 6246bef495ff5c119b986d2c36967861d9178036 remove old-style semicolons diff -r 6246bef495ff -r 44790ec65f70 src/HOL/Metis_Examples/Abstraction.thy --- a/src/HOL/Metis_Examples/Abstraction.thy Tue Nov 15 12:39:29 2011 +0100 +++ b/src/HOL/Metis_Examples/Abstraction.thy Tue Nov 15 12:39:49 2011 +0100 @@ -14,7 +14,7 @@ declare [[metis_new_skolemizer]] (*For Christoph Benzmueller*) -lemma "x<1 & ((op=) = (op=)) ==> ((op=) = (op=)) & (x<(2::nat))"; +lemma "x<1 & ((op=) = (op=)) ==> ((op=) = (op=)) & (x<(2::nat))" by (metis One_nat_def less_Suc0 not_less0 not_less_eq numeral_2_eq_2) (*this is a theorem, but we can't prove it unless ext is applied explicitly @@ -182,7 +182,7 @@ declare [[ sledgehammer_problem_prefix = "Abstraction__image_evenB" ]] lemma "(%x. f (f x)) ` ((%x. Suc(f x)) ` {x. even x}) <= A - ==> (\x. even x --> f (f (Suc(f x))) \ A)"; + ==> (\x. even x --> f (f (Suc(f x))) \ A)" by (metis Collect_def imageI image_image image_subset_iff mem_def) declare [[ sledgehammer_problem_prefix = "Abstraction__image_curry" ]] @@ -208,11 +208,11 @@ apply (rule SigmaI) apply (erule imageI) + txt{*subgoal 2*} -apply (clarify ); -apply (simp add: ); +apply (clarify ) +apply (simp add: ) apply (rule rev_image_eqI) -apply (blast intro: elim:); -apply (simp add: ); +apply (blast intro: elim:) +apply (simp add: ) done (*Given the difficulty of the previous problem, these two are probably diff -r 6246bef495ff -r 44790ec65f70 src/HOL/Metis_Examples/Message.thy --- a/src/HOL/Metis_Examples/Message.thy Tue Nov 15 12:39:29 2011 +0100 +++ b/src/HOL/Metis_Examples/Message.thy Tue Nov 15 12:39:49 2011 +0100 @@ -243,7 +243,7 @@ done lemma parts_trans: "[| X\ parts G; G \ parts H |] ==> X\ parts H" -by (blast dest: parts_mono); +by (blast dest: parts_mono) lemma parts_cut: "[|Y\ parts (insert X G); X\ parts H|] ==> Y\ parts(G \ H)" by (metis Un_insert_left Un_insert_right insert_absorb mem_def parts_Un parts_idem sup1CI) @@ -665,7 +665,7 @@ done lemma analz_analz_Un [simp]: "analz (analz G \ H) = analz (G \ H)" -apply (rule equalityI); +apply (rule equalityI) apply (metis analz_idem analz_subset_cong order_eq_refl) apply (metis analz_increasing analz_subset_cong order_eq_refl) done