# HG changeset patch # User urbanc # Date 1149527380 -7200 # Node ID 45897b49fdd2980e3e05211706fac03b18e3d16f # Parent b4a0da62126e922c4834a7e16a527f52907b14d7 added some further lemmas that deal with permutations and set-operators diff -r b4a0da62126e -r 45897b49fdd2 src/HOL/Nominal/Nominal.thy --- a/src/HOL/Nominal/Nominal.thy Mon Jun 05 18:38:41 2006 +0200 +++ b/src/HOL/Nominal/Nominal.thy Mon Jun 05 19:09:40 2006 +0200 @@ -985,15 +985,6 @@ section {* further lemmas for permutation types *} (*==============================================*) -lemma perm_diff: - fixes X::"'a set" - and Y::"'a set" - and pi::"'x prm" - assumes pt: "pt TYPE('a) TYPE('x)" - and at: "at TYPE('x)" - shows "pi \ (X - Y) = (pi \ X) - (pi \ Y)" - by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) - lemma pt_rev_pi: fixes pi :: "'x prm" and x :: "'a" @@ -1171,6 +1162,16 @@ thus "x\(pi\Y)" by (force simp add: pt_set_bij1a[OF pt, OF at]) qed +lemma pt_set_diff_eqvt: + fixes X::"'a set" + and Y::"'a set" + and pi::"'x prm" + assumes pt: "pt TYPE('a) TYPE('x)" + and at: "at TYPE('x)" + shows "pi \ (X - Y) = (pi \ X) - (pi \ Y)" + by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) + + -- "some helper lemmas for the pt_perm_supp_ineq lemma" lemma Collect_permI: fixes pi :: "'x prm"