# HG changeset patch # User bulwahn # Date 1336122511 -7200 # Node ID 45bf22d8a81d88edc5d6c28dfece85d11a6449d6 # Parent 4e9c06c194d972335cabe962b2f643664310879c using the new transfer method to obtain abstract properties of RBT trees diff -r 4e9c06c194d9 -r 45bf22d8a81d src/HOL/Quotient_Examples/Lift_RBT.thy --- a/src/HOL/Quotient_Examples/Lift_RBT.thy Wed May 02 22:05:59 2012 +0200 +++ b/src/HOL/Quotient_Examples/Lift_RBT.thy Fri May 04 11:08:31 2012 +0200 @@ -8,6 +8,8 @@ imports Main "~~/src/HOL/Library/RBT_Impl" begin +(* TODO: Replace the ancient Library/RBT theory by this example of the lifting and transfer mechanism. *) + subsection {* Type definition *} typedef (open) ('a, 'b) rbt = "{t :: ('a\linorder, 'b) RBT_Impl.rbt. is_rbt t}" @@ -77,23 +79,21 @@ subsection {* Abstract lookup properties *} -(* TODO: obtain the following lemmas by lifting existing theorems. *) - lemma lookup_RBT: "is_rbt t \ lookup (RBT t) = rbt_lookup t" by (simp add: lookup_def RBT_inverse) lemma lookup_impl_of: "rbt_lookup (impl_of t) = lookup t" - by (simp add: lookup_def) + by transfer (rule refl) lemma entries_impl_of: "RBT_Impl.entries (impl_of t) = entries t" - by (simp add: entries_def) + by transfer (rule refl) lemma keys_impl_of: "RBT_Impl.keys (impl_of t) = keys t" - by (simp add: keys_def) + by transfer (rule refl) lemma lookup_empty [simp]: "lookup empty = Map.empty" @@ -101,43 +101,43 @@ lemma lookup_insert [simp]: "lookup (insert k v t) = (lookup t)(k \ v)" - by (simp add: insert_def lookup_RBT rbt_lookup_rbt_insert lookup_impl_of) + by transfer (rule rbt_lookup_rbt_insert) lemma lookup_delete [simp]: "lookup (delete k t) = (lookup t)(k := None)" - by (simp add: delete_def lookup_RBT rbt_lookup_rbt_delete lookup_impl_of restrict_complement_singleton_eq) + by transfer (simp add: rbt_lookup_rbt_delete restrict_complement_singleton_eq) lemma map_of_entries [simp]: "map_of (entries t) = lookup t" - by (simp add: entries_def map_of_entries lookup_impl_of) + by transfer (simp add: map_of_entries) lemma entries_lookup: "entries t1 = entries t2 \ lookup t1 = lookup t2" - by (simp add: entries_def lookup_def entries_rbt_lookup) + by transfer (simp add: entries_rbt_lookup) lemma lookup_bulkload [simp]: "lookup (bulkload xs) = map_of xs" - by (simp add: bulkload_def lookup_RBT rbt_lookup_rbt_bulkload) + by transfer (rule rbt_lookup_rbt_bulkload) lemma lookup_map_entry [simp]: "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" - by (simp add: map_entry_def lookup_RBT rbt_lookup_rbt_map_entry lookup_impl_of) + by transfer (rule rbt_lookup_rbt_map_entry) lemma lookup_map [simp]: "lookup (map f t) k = Option.map (f k) (lookup t k)" - by (simp add: map_def lookup_RBT rbt_lookup_map lookup_impl_of) + by transfer (rule rbt_lookup_map) lemma fold_fold: "fold f t = List.fold (prod_case f) (entries t)" - by (simp add: fold_def fun_eq_iff RBT_Impl.fold_def entries_impl_of) + by transfer (rule RBT_Impl.fold_def) lemma impl_of_empty: "impl_of empty = RBT_Impl.Empty" - by (simp add: empty_def RBT_inverse) + by transfer (rule refl) lemma is_empty_empty [simp]: "is_empty t \ t = empty" - by (simp add: rbt_eq_iff is_empty_def impl_of_empty split: rbt.split) + unfolding is_empty_def by transfer (simp split: rbt.split) lemma RBT_lookup_empty [simp]: (*FIXME*) "rbt_lookup t = Map.empty \ t = RBT_Impl.Empty" @@ -145,15 +145,15 @@ lemma lookup_empty_empty [simp]: "lookup t = Map.empty \ t = empty" - by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse) + by transfer (rule RBT_lookup_empty) lemma sorted_keys [iff]: "sorted (keys t)" - by (simp add: keys_def RBT_Impl.keys_def rbt_sorted_entries) + by transfer (simp add: RBT_Impl.keys_def rbt_sorted_entries) lemma distinct_keys [iff]: "distinct (keys t)" - by (simp add: keys_def RBT_Impl.keys_def distinct_entries) + by transfer (simp add: RBT_Impl.keys_def distinct_entries) end \ No newline at end of file