# HG changeset patch # User huffman # Date 1176146904 -7200 # Node ID 4747e87ac5c4fd3ae6153d9a6b1d71c9f81c864f # Parent d650e51b5970e7ccb3f7b48cb3e9ac41946fff25 generalized type of lemma setsum_product diff -r d650e51b5970 -r 4747e87ac5c4 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Mon Apr 09 04:51:28 2007 +0200 +++ b/src/HOL/Finite_Set.thy Mon Apr 09 21:28:24 2007 +0200 @@ -1258,7 +1258,7 @@ qed lemma setsum_product: - fixes f :: "nat => ('a::semiring_0_cancel)" + fixes f :: "'a => ('b::semiring_0_cancel)" shows "setsum f A * setsum g B = (\i\A. \j\B. f i * g j)" by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)