# HG changeset patch # User himmelma # Date 1265029932 -3600 # Node ID 475aef44d5fb4814dff7fd2f606a0279d7d86f87 # Parent 6676fd863e02727bf4702b43971a78f94f771c99 Removed explicit type annotations diff -r 6676fd863e02 -r 475aef44d5fb src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Sun Jan 31 19:07:03 2010 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Feb 01 14:12:12 2010 +0100 @@ -1252,22 +1252,21 @@ using vector_derivative_works[unfolded differentiable_def] using assms by(auto simp add:has_vector_derivative_def) -lemma has_vector_derivative_within_subset: fixes f::"real \ real^'a" shows +lemma has_vector_derivative_within_subset: "(f has_vector_derivative f') (at x within s) \ t \ s \ (f has_vector_derivative f') (at x within t)" unfolding has_vector_derivative_def apply(rule has_derivative_within_subset) by auto -lemma has_vector_derivative_const: fixes c::"real^'n" shows +lemma has_vector_derivative_const: "((\x. c) has_vector_derivative 0) net" unfolding has_vector_derivative_def using has_derivative_const by auto lemma has_vector_derivative_id: "((\x::real. x) has_vector_derivative 1) net" unfolding has_vector_derivative_def using has_derivative_id by auto -lemma has_vector_derivative_cmul: fixes f::"real \ real^'a" - shows "(f has_vector_derivative f') net \ ((\x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net" +lemma has_vector_derivative_cmul: "(f has_vector_derivative f') net \ ((\x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net" unfolding has_vector_derivative_def apply(drule has_derivative_cmul) by(auto simp add:group_simps) -lemma has_vector_derivative_cmul_eq: fixes f::"real \ real^'a" assumes "c \ 0" +lemma has_vector_derivative_cmul_eq: assumes "c \ 0" shows "(((\x. c *\<^sub>R f x) has_vector_derivative (c *\<^sub>R f')) net \ (f has_vector_derivative f') net)" apply rule apply(drule has_vector_derivative_cmul[where c="1/c"]) defer apply(rule has_vector_derivative_cmul) using assms by auto