# HG changeset patch # User noschinl # Date 1315923721 -7200 # Node ID 482f1807976e4f9c0acfb721a19a8160ccd02229 # Parent 6a80fbc4e72c83bf0292809a5fd0016ef69b984c tune proofs diff -r 6a80fbc4e72c -r 482f1807976e src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Tue Sep 13 16:21:48 2011 +0200 +++ b/src/HOL/Complete_Lattices.thy Tue Sep 13 16:22:01 2011 +0200 @@ -164,13 +164,13 @@ by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower) lemma INF_insert: "(\x\insert a A. f x) = f a \ INFI A f" - by (simp add: INF_def Inf_insert) + by (simp add: INF_def) lemma Sup_insert [simp]: "\insert a A = a \ \A" by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper) lemma SUP_insert: "(\x\insert a A. f x) = f a \ SUPR A f" - by (simp add: SUP_def Sup_insert) + by (simp add: SUP_def) lemma INF_image [simp]: "(\x\f`A. g x) = (\x\A. g (f x))" by (simp add: INF_def image_image) @@ -293,7 +293,7 @@ proof assume "\x\A. x = \" then have "A = {} \ A = {\}" by auto - then show "\A = \" by (auto simp add: Inf_insert) + then show "\A = \" by auto next assume "\A = \" show "\x\A. x = \" @@ -301,7 +301,7 @@ assume "\ (\x\A. x = \)" then obtain x where "x \ A" and "x \ \" by blast then obtain B where "A = insert x B" by blast - with `\A = \` `x \ \` show False by (simp add: Inf_insert) + with `\A = \` `x \ \` show False by simp qed qed then show "\ = \A \ (\x\A. x = \)" by auto @@ -310,7 +310,7 @@ lemma INF_top_conv [simp]: "(\x\A. B x) = \ \ (\x\A. B x = \)" "\ = (\x\A. B x) \ (\x\A. B x = \)" - by (auto simp add: INF_def Inf_top_conv) + by (auto simp add: INF_def) lemma Sup_bot_conv [simp, no_atp]: "\A = \ \ (\x\A. x = \)" (is ?P) @@ -324,7 +324,7 @@ lemma SUP_bot_conv [simp]: "(\x\A. B x) = \ \ (\x\A. B x = \)" "\ = (\x\A. B x) \ (\x\A. B x = \)" - by (auto simp add: SUP_def Sup_bot_conv) + by (auto simp add: SUP_def) lemma INF_const [simp]: "A \ {} \ (\i\A. f) = f" by (auto intro: antisym INF_lower INF_greatest) @@ -420,7 +420,7 @@ subclass distrib_lattice proof fix a b c from sup_Inf have "a \ \{b, c} = (\d\{b, c}. a \ d)" . - then show "a \ b \ c = (a \ b) \ (a \ c)" by (simp add: INF_def Inf_insert) + then show "a \ b \ c = (a \ b) \ (a \ c)" by (simp add: INF_def) qed lemma Inf_sup: @@ -535,7 +535,7 @@ lemma SUP_eq_top_iff [simp]: "(\i\A. f i) = \ \ (\x<\. \i\A. x < f i)" - unfolding SUP_def Sup_eq_top_iff by auto + unfolding SUP_def by auto lemma Inf_eq_bot_iff [simp]: "\A = \ \ (\x>\. \i\A. i < x)" @@ -547,7 +547,7 @@ lemma INF_eq_bot_iff [simp]: "(\i\A. f i) = \ \ (\x>\. \i\A. f i < x)" - unfolding INF_def Inf_eq_bot_iff by auto + unfolding INF_def by auto end @@ -1152,19 +1152,19 @@ lemma (in complete_lattice) Inf_singleton [simp]: "\{a} = a" - by (simp add: Inf_insert) + by simp lemma (in complete_lattice) Sup_singleton [simp]: "\{a} = a" - by (simp add: Sup_insert) + by simp lemma (in complete_lattice) Inf_binary: "\{a, b} = a \ b" - by (simp add: Inf_insert) + by simp lemma (in complete_lattice) Sup_binary: "\{a, b} = a \ b" - by (simp add: Sup_insert) + by simp lemmas (in complete_lattice) INFI_def = INF_def lemmas (in complete_lattice) SUPR_def = SUP_def @@ -1202,7 +1202,7 @@ by (fact SUP_def) lemma Int_eq_Inter: "A \ B = \{A, B}" - by (simp add: Inf_insert) + by simp lemma INTER_eq_Inter_image: "(\x\A. B x) = \(B`A)" diff -r 6a80fbc4e72c -r 482f1807976e src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Tue Sep 13 16:21:48 2011 +0200 +++ b/src/HOL/Finite_Set.thy Tue Sep 13 16:22:01 2011 +0200 @@ -754,7 +754,7 @@ proof - interpret comp_fun_idem inf by (fact comp_fun_idem_inf) from `finite A` show ?thesis by (induct A arbitrary: B) - (simp_all add: Inf_insert inf_commute fold_fun_comm) + (simp_all add: inf_commute fold_fun_comm) qed lemma sup_Sup_fold_sup: @@ -763,7 +763,7 @@ proof - interpret comp_fun_idem sup by (fact comp_fun_idem_sup) from `finite A` show ?thesis by (induct A arbitrary: B) - (simp_all add: Sup_insert sup_commute fold_fun_comm) + (simp_all add: sup_commute fold_fun_comm) qed lemma Inf_fold_inf: @@ -784,7 +784,7 @@ interpret comp_fun_idem "inf \ f" by (fact comp_comp_fun_idem) from `finite A` show "?fold = ?inf" by (induct A arbitrary: B) - (simp_all add: INFI_def Inf_insert inf_left_commute) + (simp_all add: INFI_def inf_left_commute) qed lemma sup_SUPR_fold_sup: @@ -795,7 +795,7 @@ interpret comp_fun_idem "sup \ f" by (fact comp_comp_fun_idem) from `finite A` show "?fold = ?sup" by (induct A arbitrary: B) - (simp_all add: SUPR_def Sup_insert sup_left_commute) + (simp_all add: SUPR_def sup_left_commute) qed lemma INFI_fold_inf: diff -r 6a80fbc4e72c -r 482f1807976e src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Tue Sep 13 16:21:48 2011 +0200 +++ b/src/HOL/Lattices.thy Tue Sep 13 16:22:01 2011 +0200 @@ -271,7 +271,7 @@ also have "\ = x \ (z \ (x \ y))" by (simp add: D inf_commute sup_assoc del: sup_inf_absorb) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" - by(simp add:inf_sup_absorb inf_commute) + by(simp add: inf_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) finally show ?thesis . qed @@ -284,7 +284,7 @@ also have "\ = x \ (z \ (x \ y))" by (simp add: D sup_commute inf_assoc del: inf_sup_absorb) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" - by(simp add:sup_inf_absorb sup_commute) + by(simp add: sup_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) finally show ?thesis . qed @@ -547,7 +547,7 @@ lemma compl_less_compl_iff: (* TODO: declare [simp] ? *) "- x \ - y \ y \ x" - by (auto simp add: less_le compl_le_compl_iff) + by (auto simp add: less_le) lemma compl_less_swap1: assumes "y \ - x" shows "x \ - y"