# HG changeset patch # User ballarin # Date 1254431039 -7200 # Node ID 484863ae9b98e1cfc63d99b9680507adf13e77f5 # Parent 88b58880d52c978964734315bdfc52da36c98d4b# Parent a007a7cd8c2f8ceb0614a1363e6157d7792a5e19 Merged again. diff -r 88b58880d52c -r 484863ae9b98 src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML --- a/src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML Thu Oct 01 20:52:18 2009 +0200 +++ b/src/HOL/Library/Sum_Of_Squares/sum_of_squares.ML Thu Oct 01 23:03:59 2009 +0200 @@ -1,8 +1,8 @@ -(* Title: sum_of_squares.ML - Authors: Amine Chaieb, University of Cambridge - Philipp Meyer, TU Muenchen +(* Title: HOL/Library/Sum_Of_Squares/sum_of_squares.ML + Author: Amine Chaieb, University of Cambridge + Author: Philipp Meyer, TU Muenchen -A tactic for proving nonlinear inequalities +A tactic for proving nonlinear inequalities. *) signature SOS = @@ -16,11 +16,11 @@ proof_method -> Proof.context -> int -> tactic val debugging : bool Unsynchronized.ref; - + exception Failure of string; end -structure Sos : SOS = +structure Sos : SOS = struct val rat_0 = Rat.zero; @@ -33,19 +33,19 @@ val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int; val numerator_rat = Rat.quotient_of_rat #> fst #> Rat.rat_of_int; -fun int_of_rat a = +fun int_of_rat a = case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int"; fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y)); -fun rat_pow r i = - let fun pow r i = - if i = 0 then rat_1 else +fun rat_pow r i = + let fun pow r i = + if i = 0 then rat_1 else let val d = pow r (i div 2) in d */ d */ (if i mod 2 = 0 then rat_1 else r) end in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end; -fun round_rat r = +fun round_rat r = let val (a,b) = Rat.quotient_of_rat (Rat.abs r) val d = a div b val s = if r =/ rat_1 then normalize (y // rat_10) + 1 - else 0 + else 0 in fun decimalize d x = if x =/ rat_0 then "0.0" else - let + let val y = Rat.abs x val e = normalize y val z = pow10(~ e) */ y +/ rat_1 @@ -113,7 +113,7 @@ ([],[]) => b | (h1::t1,h2::t2) => f h1 h2 (fold_rev2 f t1 t2 b) | _ => error "fold_rev2"; - + (* Vectors. Conventionally indexed 1..n. *) fun vector_0 n = (n,FuncUtil.Intfunc.empty):vector; @@ -127,7 +127,7 @@ val vector_1 = vector_const rat_1; fun vector_cmul c (v:vector) = - let val n = dim v + let val n = dim v in if c =/ rat_0 then vector_0 n else (n,FuncUtil.Intfunc.map (fn x => c */ x) (snd v)) end; @@ -135,24 +135,24 @@ fun vector_neg (v:vector) = (fst v,FuncUtil.Intfunc.map Rat.neg (snd v)) :vector; fun vector_add (v1:vector) (v2:vector) = - let val m = dim v1 - val n = dim v2 + let val m = dim v1 + val n = dim v2 in if m <> n then error "vector_add: incompatible dimensions" - else (n,FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector + else (n,FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd v1) (snd v2)) :vector end; fun vector_sub v1 v2 = vector_add v1 (vector_neg v2); fun vector_dot (v1:vector) (v2:vector) = - let val m = dim v1 - val n = dim v2 - in if m <> n then error "vector_dot: incompatible dimensions" - else FuncUtil.Intfunc.fold (fn (i,x) => fn a => x +/ a) + let val m = dim v1 + val n = dim v2 + in if m <> n then error "vector_dot: incompatible dimensions" + else FuncUtil.Intfunc.fold (fn (i,x) => fn a => x +/ a) (FuncUtil.Intfunc.combine (curry op */) (fn x => x =/ rat_0) (snd v1) (snd v2)) rat_0 end; fun vector_of_list l = - let val n = length l + let val n = length l in (n,fold_rev2 (curry FuncUtil.Intfunc.update) (1 upto n) l FuncUtil.Intfunc.empty) :vector end; @@ -170,18 +170,18 @@ val matrix_1 = matrix_const rat_1; fun matrix_cmul c (m:matrix) = - let val (i,j) = dimensions m + let val (i,j) = dimensions m in if c =/ rat_0 then matrix_0 (i,j) else ((i,j),FuncUtil.Intpairfunc.map (fn x => c */ x) (snd m)) end; -fun matrix_neg (m:matrix) = +fun matrix_neg (m:matrix) = (dimensions m, FuncUtil.Intpairfunc.map Rat.neg (snd m)) :matrix; fun matrix_add (m1:matrix) (m2:matrix) = - let val d1 = dimensions m1 - val d2 = dimensions m2 - in if d1 <> d2 + let val d1 = dimensions m1 + val d2 = dimensions m2 + in if d1 <> d2 then error "matrix_add: incompatible dimensions" else (d1,FuncUtil.Intpairfunc.combine (curry op +/) (fn x => x =/ rat_0) (snd m1) (snd m2)) :matrix end;; @@ -189,33 +189,33 @@ fun matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2); fun row k (m:matrix) = - let val (i,j) = dimensions m + let val (i,j) = dimensions m in (j, FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then FuncUtil.Intfunc.update (j,c) a else a) (snd m) FuncUtil.Intfunc.empty ) : vector end; fun column k (m:matrix) = - let val (i,j) = dimensions m + let val (i,j) = dimensions m in (i, FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if j = k then FuncUtil.Intfunc.update (i,c) a else a) (snd m) FuncUtil.Intfunc.empty) : vector end; fun transp (m:matrix) = - let val (i,j) = dimensions m + let val (i,j) = dimensions m in ((j,i),FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => FuncUtil.Intpairfunc.update ((j,i), c) a) (snd m) FuncUtil.Intpairfunc.empty) :matrix end; fun diagonal (v:vector) = - let val n = dim v + let val n = dim v in ((n,n),FuncUtil.Intfunc.fold (fn (i, c) => fn a => FuncUtil.Intpairfunc.update ((i,i), c) a) (snd v) FuncUtil.Intpairfunc.empty) : matrix end; fun matrix_of_list l = - let val m = length l + let val m = length l in if m = 0 then matrix_0 (0,0) else - let val n = length (hd l) + let val n = length (hd l) in ((m,n),itern 1 l (fn v => fn i => itern 1 v (fn c => fn j => FuncUtil.Intpairfunc.update ((i,j), c))) FuncUtil.Intpairfunc.empty) end end; @@ -240,20 +240,20 @@ FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => FuncUtil.Ctermfunc.tryapplyd m2 x 0 >= k andalso a) m1 true;; fun monomial_div m1 m2 = - let val m = FuncUtil.Ctermfunc.combine (curry op +) - (fn x => x = 0) m1 (FuncUtil.Ctermfunc.map (fn x => ~ x) m2) + let val m = FuncUtil.Ctermfunc.combine (curry op +) + (fn x => x = 0) m1 (FuncUtil.Ctermfunc.map (fn x => ~ x) m2) in if FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => k >= 0 andalso a) m true then m else error "monomial_div: non-divisible" end; -fun monomial_degree x m = +fun monomial_degree x m = FuncUtil.Ctermfunc.tryapplyd m x 0;; fun monomial_lcm m1 m2 = fold_rev (fn x => FuncUtil.Ctermfunc.update (x, max (monomial_degree x m1) (monomial_degree x m2))) (gen_union (is_equal o FuncUtil.cterm_ord) (FuncUtil.Ctermfunc.dom m1, FuncUtil.Ctermfunc.dom m2)) (FuncUtil.Ctermfunc.empty); -fun monomial_multidegree m = +fun monomial_multidegree m = FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => k + a) m 0;; fun monomial_variables m = FuncUtil.Ctermfunc.dom m;; @@ -265,7 +265,7 @@ val poly_0 = FuncUtil.Monomialfunc.empty; -fun poly_isconst p = +fun poly_isconst p = FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => FuncUtil.Ctermfunc.is_empty m andalso a) p true; fun poly_var x = FuncUtil.Monomialfunc.onefunc (monomial_var x,rat_1); @@ -286,7 +286,7 @@ fun poly_cmmul (c,m) p = if c =/ rat_0 then poly_0 - else if FuncUtil.Ctermfunc.is_empty m + else if FuncUtil.Ctermfunc.is_empty m then FuncUtil.Monomialfunc.map (fn d => c */ d) p else FuncUtil.Monomialfunc.fold (fn (m', d) => fn a => (FuncUtil.Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0; @@ -294,9 +294,9 @@ FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0; fun poly_div p1 p2 = - if not(poly_isconst p2) + if not(poly_isconst p2) then error "poly_div: non-constant" else - let val c = eval FuncUtil.Ctermfunc.empty p2 + let val c = eval FuncUtil.Ctermfunc.empty p2 in if c =/ rat_0 then error "poly_div: division by zero" else poly_cmul (Rat.inv c) p1 end; @@ -310,11 +310,11 @@ if k mod 2 = 1 then poly_mul p q else q end; fun poly_exp p1 p2 = - if not(poly_isconst p2) - then error "poly_exp: not a constant" + if not(poly_isconst p2) + then error "poly_exp: not a constant" else poly_pow p1 (int_of_rat (eval FuncUtil.Ctermfunc.empty p2)); -fun degree x p = +fun degree x p = FuncUtil.Monomialfunc.fold (fn (m,c) => fn a => max (monomial_degree x m) a) p 0; fun multidegree p = @@ -329,14 +329,14 @@ local fun ord (l1,l2) = case (l1,l2) of - (_,[]) => LESS + (_,[]) => LESS | ([],_) => GREATER - | (h1::t1,h2::t2) => - (case humanorder_varpow (h1, h2) of + | (h1::t1,h2::t2) => + (case humanorder_varpow (h1, h2) of LESS => LESS | EQUAL => ord (t1,t2) | GREATER => GREATER) -in fun humanorder_monomial m1 m2 = +in fun humanorder_monomial m1 m2 = ord (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m1), sort humanorder_varpow (FuncUtil.Ctermfunc.dest m2)) end; @@ -344,30 +344,30 @@ (* Conversions to strings. *) fun string_of_vector min_size max_size (v:vector) = - let val n_raw = dim v + let val n_raw = dim v in if n_raw = 0 then "[]" else - let - val n = max min_size (min n_raw max_size) - val xs = map (Rat.string_of_rat o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) + let + val n = max min_size (min n_raw max_size) + val xs = map (Rat.string_of_rat o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) in "[" ^ space_implode ", " xs ^ (if n_raw > max_size then ", ...]" else "]") end end; fun string_of_matrix max_size (m:matrix) = - let + let val (i_raw,j_raw) = dimensions m - val i = min max_size i_raw + val i = min max_size i_raw val j = min max_size j_raw - val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) + val rstr = map (fn k => string_of_vector j j (row k m)) (1 upto i) in "["^ space_implode ";\n " rstr ^ (if j > max_size then "\n ...]" else "]") end; -fun string_of_term t = +fun string_of_term t = case t of a$b => "("^(string_of_term a)^" "^(string_of_term b)^")" - | Abs x => + | Abs x => let val (xn, b) = Term.dest_abs x in "(\\"^xn^"."^(string_of_term b)^")" end @@ -379,13 +379,13 @@ val string_of_cterm = string_of_term o term_of; fun string_of_varpow x k = - if k = 1 then string_of_cterm x + if k = 1 then string_of_cterm x else string_of_cterm x^"^"^string_of_int k; fun string_of_monomial m = if FuncUtil.Ctermfunc.is_empty m then "1" else let val vps = fold_rev (fn (x,k) => fn a => string_of_varpow x k :: a) - (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m)) [] + (sort humanorder_varpow (FuncUtil.Ctermfunc.dest m)) [] in space_implode "*" vps end; @@ -396,14 +396,14 @@ fun string_of_poly p = if FuncUtil.Monomialfunc.is_empty p then "<<0>>" else - let + let val cms = sort (fn ((m1,_),(m2,_)) => humanorder_monomial m1 m2) (FuncUtil.Monomialfunc.dest p) val s = fold (fn (m,c) => fn a => if c >" end; @@ -422,36 +422,36 @@ fun is_comb t = case t of _$_ => true | _ => false fun poly_of_term tm = if tm aconvc zero_tm then poly_0 - else if RealArith.is_ratconst tm + else if RealArith.is_ratconst tm then poly_const(RealArith.dest_ratconst tm) - else + else (let val (lop,r) = Thm.dest_comb tm in if lop aconvc neg_tm then poly_neg(poly_of_term r) else if lop aconvc inv_tm then - let val p = poly_of_term r - in if poly_isconst p + let val p = poly_of_term r + in if poly_isconst p then poly_const(Rat.inv (eval FuncUtil.Ctermfunc.empty p)) else error "poly_of_term: inverse of non-constant polyomial" end else (let val (opr,l) = Thm.dest_comb lop - in - if opr aconvc pow_tm andalso is_numeral r + in + if opr aconvc pow_tm andalso is_numeral r then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r) - else if opr aconvc add_tm + else if opr aconvc add_tm then poly_add (poly_of_term l) (poly_of_term r) - else if opr aconvc sub_tm + else if opr aconvc sub_tm then poly_sub (poly_of_term l) (poly_of_term r) - else if opr aconvc mul_tm + else if opr aconvc mul_tm then poly_mul (poly_of_term l) (poly_of_term r) - else if opr aconvc div_tm - then let - val p = poly_of_term l - val q = poly_of_term r + else if opr aconvc div_tm + then let + val p = poly_of_term l + val q = poly_of_term r in if poly_isconst q then poly_cmul (Rat.inv (eval FuncUtil.Ctermfunc.empty q)) p else error "poly_of_term: division by non-constant polynomial" end else poly_var tm - + end handle CTERM ("dest_comb",_) => poly_var tm) end @@ -465,21 +465,21 @@ (* String of vector (just a list of space-separated numbers). *) fun sdpa_of_vector (v:vector) = - let + let val n = dim v - val strs = map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) + val strs = map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) in space_implode " " strs ^ "\n" end; -fun triple_int_ord ((a,b,c),(a',b',c')) = - prod_ord int_ord (prod_ord int_ord int_ord) +fun triple_int_ord ((a,b,c),(a',b',c')) = + prod_ord int_ord (prod_ord int_ord int_ord) ((a,(b,c)),(a',(b',c'))); structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord); (* String for block diagonal matrix numbered k. *) fun sdpa_of_blockdiagonal k m = - let + let val pfx = string_of_int k ^" " val ents = Inttriplefunc.fold (fn ((b,i,j), c) => fn a => if i > j then a else ((b,i,j),c)::a) m [] @@ -492,10 +492,10 @@ (* String for a matrix numbered k, in SDPA sparse format. *) fun sdpa_of_matrix k (m:matrix) = - let + let val pfx = string_of_int k ^ " 1 " - val ms = FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if i > j then a else ((i,j),c)::a) (snd m) [] - val mss = sort ((prod_ord int_ord int_ord) o pairself fst) ms + val ms = FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if i > j then a else ((i,j),c)::a) (snd m) [] + val mss = sort ((prod_ord int_ord int_ord) o pairself fst) ms in fold_rev (fn ((i,j),c) => fn a => pfx ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) mss "" @@ -509,9 +509,9 @@ (* ------------------------------------------------------------------------- *) fun sdpa_of_problem obj mats = - let + let val m = length mats - 1 - val (n,_) = dimensions (hd mats) + val (n,_) = dimensions (hd mats) in string_of_int m ^ "\n" ^ "1\n" ^ @@ -525,10 +525,10 @@ else if String.sub(str,pos) = chr then pos else index_char str chr (pos + 1); fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b); -fun rat_of_string s = +fun rat_of_string s = let val n = index_char s #"/" 0 in if n = ~1 then s |> IntInf.fromString |> valOf |> Rat.rat_of_int - else + else let val SOME numer = IntInf.fromString(String.substring(s,0,n)) val SOME den = IntInf.fromString (String.substring(s,n+1,String.size s - n - 1)) in rat_of_quotient(numer, den) @@ -551,7 +551,7 @@ decimalint -- Scan.option (Scan.$$ "." |-- decimalfrac) >> (fn (h,NONE) => h | (h,SOME x) => h +/ x) fun signed prs = - $$ "-" |-- prs >> Rat.neg + $$ "-" |-- prs >> Rat.neg || $$ "+" |-- prs || prs; @@ -563,8 +563,8 @@ >> (fn (h, x) => h */ pow10 (int_of_rat x)); fun mkparser p s = - let val (x,rst) = p (explode s) - in if null rst then x + let val (x,rst) = p (explode s) + in if null rst then x else error "mkparser: unparsed input" end;; @@ -590,23 +590,23 @@ fun common_denominator fld amat acc = fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc fun maximal_element fld amat acc = - fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc + fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x in Real.fromLargeInt a / Real.fromLargeInt b end; in fun pi_scale_then solver (obj:vector) mats = - let + let val cd1 = fold_rev (common_denominator FuncUtil.Intpairfunc.fold) mats (rat_1) - val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) + val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) val mats' = map (FuncUtil.Intpairfunc.map (fn x => cd1 */ x)) mats val obj' = vector_cmul cd2 obj val max1 = fold_rev (maximal_element FuncUtil.Intpairfunc.fold) mats' (rat_0) - val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) + val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) val scal1 = pow2 (20 - trunc(Math.ln (float_of_rat max1) / Math.ln 2.0)) - val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) + val scal2 = pow2 (20 - trunc(Math.ln (float_of_rat max2) / Math.ln 2.0)) val mats'' = map (FuncUtil.Intpairfunc.map (fn x => x */ scal1)) mats' - val obj'' = vector_cmul scal2 obj' + val obj'' = vector_cmul scal2 obj' in solver obj'' mats'' end end; @@ -622,24 +622,24 @@ fun common_denominator fld amat acc = fld (fn (m,c) => fn a => lcm_rat (denominator_rat c) a) amat acc fun maximal_element fld amat acc = - fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc + fld (fn (m,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x in Real.fromLargeInt a / Real.fromLargeInt b end; fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0) in fun tri_scale_then solver (obj:vector) mats = - let + let val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1) - val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) + val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) val mats' = map (Inttriplefunc.map (fn x => cd1 */ x)) mats val obj' = vector_cmul cd2 obj val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0) - val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) + val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0)) - val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) + val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) val mats'' = map (Inttriplefunc.map (fn x => x */ scal1)) mats' - val obj'' = vector_cmul scal2 obj' + val obj'' = vector_cmul scal2 obj' in solver obj'' mats'' end end; @@ -647,10 +647,10 @@ (* Round a vector to "nice" rationals. *) fun nice_rational n x = round_rat (n */ x) // n;; -fun nice_vector n ((d,v) : vector) = - (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => - let val y = nice_rational n c - in if c =/ rat_0 then a +fun nice_vector n ((d,v) : vector) = + (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => + let val y = nice_rational n c + in if c =/ rat_0 then a else FuncUtil.Intfunc.update (i,y) a end) v FuncUtil.Intfunc.empty):vector fun dest_ord f x = is_equal (f x); @@ -663,7 +663,7 @@ fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; fun tri_equation_eval assig eq = - let fun value v = Inttriplefunc.apply assig v + let fun value v = Inttriplefunc.apply assig v in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 end; @@ -676,16 +676,16 @@ [] => error "extract_first" | h::t => if p h then (h,t) else let val (k,s) = extract_first p t in (k,h::s) end -fun eliminate vars dun eqs = case vars of +fun eliminate vars dun eqs = case vars of [] => if forall Inttriplefunc.is_empty eqs then dun else raise Unsolvable | v::vs => - ((let - val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs + ((let + val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs val a = Inttriplefunc.apply eq v val eq' = tri_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.delete_safe v eq) fun elim e = - let val b = Inttriplefunc.tryapplyd e v rat_0 + let val b = Inttriplefunc.tryapplyd e v rat_0 in if b =/ rat_0 then e else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) end @@ -694,7 +694,7 @@ handle Failure _ => eliminate vs dun eqs) in fun tri_eliminate_equations one vars eqs = - let + let val assig = eliminate vars Inttriplefunc.empty eqs val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] in (distinct (dest_ord triple_int_ord) vs, assig) @@ -704,50 +704,50 @@ (* Eliminate all variables, in an essentially arbitrary order. *) fun tri_eliminate_all_equations one = - let + let fun choose_variable eq = - let val (v,_) = Inttriplefunc.choose eq + let val (v,_) = Inttriplefunc.choose eq in if is_equal (triple_int_ord(v,one)) then - let val eq' = Inttriplefunc.delete_safe v eq - in if Inttriplefunc.is_empty eq' then error "choose_variable" + let val eq' = Inttriplefunc.delete_safe v eq + in if Inttriplefunc.is_empty eq' then error "choose_variable" else fst (Inttriplefunc.choose eq') end - else v + else v end - fun eliminate dun eqs = case eqs of + fun eliminate dun eqs = case eqs of [] => dun | eq::oeqs => if Inttriplefunc.is_empty eq then eliminate dun oeqs else let val v = choose_variable eq val a = Inttriplefunc.apply eq v - val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) + val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) (Inttriplefunc.delete_safe v eq) fun elim e = - let val b = Inttriplefunc.tryapplyd e v rat_0 - in if b =/ rat_0 then e + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) end - in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) - (map elim oeqs) + in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) + (map elim oeqs) end in fn eqs => - let + let val assig = eliminate Inttriplefunc.empty eqs val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] in (distinct (dest_ord triple_int_ord) vs,assig) end end; - + (* Solve equations by assigning arbitrary numbers. *) fun tri_solve_equations one eqs = - let + let val (vars,assigs) = tri_eliminate_all_equations one eqs - val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars + val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1)) val ass = - Inttriplefunc.combine (curry op +/) (K false) - (Inttriplefunc.map (tri_equation_eval vfn) assigs) vfn + Inttriplefunc.combine (curry op +/) (K false) + (Inttriplefunc.map (tri_equation_eval vfn) assigs) vfn in if forall (fn e => tri_equation_eval ass e =/ rat_0) eqs then Inttriplefunc.delete_safe one ass else raise Sanity end; @@ -758,8 +758,8 @@ FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a => FuncUtil.Monomialfunc.fold (fn (m2,e) => fn b => let val m = monomial_mul m1 m2 - val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty - in FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b + val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty + in FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b end) q a) p acc ; (* Usual operations on equation-parametrized poly. *) @@ -781,7 +781,7 @@ fun pi_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; fun pi_equation_eval assig eq = - let fun value v = Inttriplefunc.apply assig v + let fun value v = Inttriplefunc.apply assig v in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 end; @@ -790,20 +790,20 @@ (* "one" that's used for a constant term. *) local -fun extract_first p l = case l of +fun extract_first p l = case l of [] => error "extract_first" | h::t => if p h then (h,t) else let val (k,s) = extract_first p t in (k,h::s) end -fun eliminate vars dun eqs = case vars of +fun eliminate vars dun eqs = case vars of [] => if forall Inttriplefunc.is_empty eqs then dun else raise Unsolvable | v::vs => - let - val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs + let + val (eq,oeqs) = extract_first (fn e => Inttriplefunc.defined e v) eqs val a = Inttriplefunc.apply eq v val eq' = pi_equation_cmul ((Rat.neg rat_1) // a) (Inttriplefunc.delete_safe v eq) fun elim e = - let val b = Inttriplefunc.tryapplyd e v rat_0 + let val b = Inttriplefunc.tryapplyd e v rat_0 in if b =/ rat_0 then e else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq) end @@ -812,7 +812,7 @@ handle Failure _ => eliminate vs dun eqs in fun pi_eliminate_equations one vars eqs = - let + let val assig = eliminate vars Inttriplefunc.empty eqs val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] in (distinct (dest_ord triple_int_ord) vs, assig) @@ -822,50 +822,50 @@ (* Eliminate all variables, in an essentially arbitrary order. *) fun pi_eliminate_all_equations one = - let + let fun choose_variable eq = - let val (v,_) = Inttriplefunc.choose eq + let val (v,_) = Inttriplefunc.choose eq in if is_equal (triple_int_ord(v,one)) then - let val eq' = Inttriplefunc.delete_safe v eq - in if Inttriplefunc.is_empty eq' then error "choose_variable" + let val eq' = Inttriplefunc.delete_safe v eq + in if Inttriplefunc.is_empty eq' then error "choose_variable" else fst (Inttriplefunc.choose eq') end - else v + else v end - fun eliminate dun eqs = case eqs of + fun eliminate dun eqs = case eqs of [] => dun | eq::oeqs => if Inttriplefunc.is_empty eq then eliminate dun oeqs else let val v = choose_variable eq val a = Inttriplefunc.apply eq v - val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) + val eq' = pi_equation_cmul ((Rat.rat_of_int ~1) // a) (Inttriplefunc.delete_safe v eq) fun elim e = - let val b = Inttriplefunc.tryapplyd e v rat_0 - in if b =/ rat_0 then e + let val b = Inttriplefunc.tryapplyd e v rat_0 + in if b =/ rat_0 then e else pi_equation_add e (pi_equation_cmul (Rat.neg b // a) eq) end - in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) - (map elim oeqs) + in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map elim dun)) + (map elim oeqs) end in fn eqs => - let + let val assig = eliminate Inttriplefunc.empty eqs val vs = Inttriplefunc.fold (fn (x, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] in (distinct (dest_ord triple_int_ord) vs,assig) end end; - + (* Solve equations by assigning arbitrary numbers. *) fun pi_solve_equations one eqs = - let + let val (vars,assigs) = pi_eliminate_all_equations one eqs - val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars + val vfn = fold_rev (fn v => Inttriplefunc.update(v,rat_0)) vars (Inttriplefunc.onefunc(one, Rat.rat_of_int ~1)) val ass = - Inttriplefunc.combine (curry op +/) (K false) - (Inttriplefunc.map (pi_equation_eval vfn) assigs) vfn + Inttriplefunc.combine (curry op +/) (K false) + (Inttriplefunc.map (pi_equation_eval vfn) assigs) vfn in if forall (fn e => pi_equation_eval ass e =/ rat_0) eqs then Inttriplefunc.delete_safe one ass else raise Sanity end; @@ -876,8 +876,8 @@ FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a => FuncUtil.Monomialfunc.fold (fn (m2,e) => fn b => let val m = monomial_mul m1 m2 - val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty - in FuncUtil.Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b + val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty + in FuncUtil.Monomialfunc.update (m,pi_equation_add (pi_equation_cmul c e) es) b end) q a) p acc ; (* Usual operations on equation-parametrized poly. *) @@ -906,19 +906,19 @@ local fun diagonalize n i m = - if FuncUtil.Intpairfunc.is_empty (snd m) then [] + if FuncUtil.Intpairfunc.is_empty (snd m) then [] else - let val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0 + let val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0 in if a11 fn a => - let val y = c // a11 - in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a + val v' = (fst v, FuncUtil.Intfunc.fold (fn (i, c) => fn a => + let val y = c // a11 + in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a end) (snd v) FuncUtil.Intfunc.empty) fun upt0 x y a = if y = rat_0 then a else FuncUtil.Intpairfunc.update (x,y) a val m' = @@ -927,15 +927,15 @@ iter (i+1,n) (fn k => (upt0 (j,k) (FuncUtil.Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ FuncUtil.Intfunc.tryapplyd (snd v) j rat_0 */ FuncUtil.Intfunc.tryapplyd (snd v') k rat_0)))) FuncUtil.Intpairfunc.empty) - in (a11,v')::diagonalize n (i + 1) m' + in (a11,v')::diagonalize n (i + 1) m' end end in fun diag m = - let - val nn = dimensions m - val n = fst nn - in if snd nn <> n then error "diagonalize: non-square matrix" + let + val nn = dimensions m + val n = fst nn + in if snd nn <> n then error "diagonalize: non-square matrix" else diagonalize n 1 m end end; @@ -946,13 +946,13 @@ (* FIXME : Potentially polymorphic keys, but here only: integers!! *) local fun upd0 x y a = if y =/ rat_0 then a else FuncUtil.Intfunc.update(x,y) a; - fun mapa f (d,v) = + fun mapa f (d,v) = (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => upd0 i (f c) a) v FuncUtil.Intfunc.empty) fun adj (c,l) = - let val a = - FuncUtil.Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) + let val a = + FuncUtil.Intfunc.fold (fn (i,c) => fn a => lcm_rat a (denominator_rat c)) (snd l) rat_1 // - FuncUtil.Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) + FuncUtil.Intfunc.fold (fn (i,c) => fn a => gcd_rat a (numerator_rat c)) (snd l) rat_0 in ((c // (a */ a)),mapa (fn x => a */ x) l) end @@ -960,20 +960,20 @@ fun deration d = if null d then (rat_0,d) else let val d' = map adj d val a = fold (lcm_rat o denominator_rat o fst) d' rat_1 // - fold (gcd_rat o numerator_rat o fst) d' rat_0 + fold (gcd_rat o numerator_rat o fst) d' rat_0 in ((rat_1 // a),map (fn (c,l) => (a */ c,l)) d') end end; - + (* Enumeration of monomials with given multidegree bound. *) -fun enumerate_monomials d vars = +fun enumerate_monomials d vars = if d < 0 then [] else if d = 0 then [FuncUtil.Ctermfunc.empty] else if null vars then [monomial_1] else let val alts = - map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) - in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) + map (fn k => let val oths = enumerate_monomials (d - k) (tl vars) + in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) (0 upto d) in flat alts end; @@ -982,12 +982,12 @@ (* Give the output polynomial and a record of how it was derived. *) fun enumerate_products d pols = -if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)] +if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)] else if d < 0 then [] else -case pols of +case pols of [] => [(poly_const rat_1,RealArith.Rational_lt rat_1)] - | (p,b)::ps => - let val e = multidegree p + | (p,b)::ps => + let val e = multidegree p in if e = 0 then enumerate_products d ps else enumerate_products d ps @ map (fn (q,c) => (poly_mul p q,RealArith.Product(b,c))) @@ -1002,13 +1002,13 @@ (* String for block diagonal matrix numbered k. *) fun sdpa_of_blockdiagonal k m = - let + let val pfx = string_of_int k ^" " val ents = - Inttriplefunc.fold - (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) - m [] - val entss = sort (triple_int_ord o pairself fst) ents + Inttriplefunc.fold + (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) + m [] + val entss = sort (triple_int_ord o pairself fst) ents in fold_rev (fn ((b,i,j),c) => fn a => pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) entss "" @@ -1017,7 +1017,7 @@ (* SDPA for problem using block diagonal (i.e. multiple SDPs) *) fun sdpa_of_blockproblem nblocks blocksizes obj mats = - let val m = length mats - 1 + let val m = length mats - 1 in string_of_int m ^ "\n" ^ string_of_int nblocks ^ "\n" ^ @@ -1049,7 +1049,7 @@ map (fn (bs,b0) => let val m = Inttriplefunc.fold (fn ((b,i,j),c) => fn a => if b = b0 then FuncUtil.Intpairfunc.update ((i,j),c) a else a) bm FuncUtil.Intpairfunc.empty - val d = FuncUtil.Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 + val d = FuncUtil.Intpairfunc.fold (fn ((i,j),c) => fn a => max a (max i j)) m 0 in (((bs,bs),m):matrix) end) (blocksizes ~~ (1 upto length blocksizes));; @@ -1057,43 +1057,43 @@ local fun tryfind_with msg f [] = raise Failure msg | tryfind_with msg f (x::xs) = (f x handle Failure s => tryfind_with s f xs); -in +in fun tryfind f = tryfind_with "tryfind" f end (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) - + fun real_positivnullstellensatz_general prover linf d eqs leqs pol = -let - val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) +let + val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) (pol::eqs @ map fst leqs) [] - val monoid = if linf then + val monoid = if linf then (poly_const rat_1,RealArith.Rational_lt rat_1):: (filter (fn (p,c) => multidegree p <= d) leqs) else enumerate_products d leqs val nblocks = length monoid fun mk_idmultiplier k p = - let + let val e = d - multidegree p val mons = enumerate_monomials e vars - val nons = mons ~~ (1 upto length mons) + val nons = mons ~~ (1 upto length mons) in (mons, fold_rev (fn (m,n) => FuncUtil.Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons FuncUtil.Monomialfunc.empty) end fun mk_sqmultiplier k (p,c) = - let + let val e = (d - multidegree p) div 2 val mons = enumerate_monomials e vars - val nons = mons ~~ (1 upto length mons) - in (mons, + val nons = mons ~~ (1 upto length mons) + in (mons, fold_rev (fn (m1,n1) => fold_rev (fn (m2,n2) => fn a => - let val m = monomial_mul m1 m2 + let val m = monomial_mul m1 m2 in if n1 > n2 then a else let val c = if n1 = n2 then rat_1 else rat_2 - val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty + val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty in FuncUtil.Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a end end) nons) @@ -1112,7 +1112,7 @@ val qvars = (0,0,0)::pvs val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig fun mk_matrix v = - Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => + Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => if b < 0 then m else let val c = Inttriplefunc.tryapplyd ass v rat_0 in if c = rat_0 then m else @@ -1133,15 +1133,15 @@ fun cterm_element (d,v) i = FuncUtil.Ctermfunc.tryapplyd v i rat_0 fun find_rounding d = - let - val _ = if !debugging - then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") + let + val _ = if !debugging + then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") else () val vec = nice_vector d raw_vec val blockmat = iter (1,dim vec) (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a) (bmatrix_neg (nth mats 0)) - val allmats = blocks blocksizes blockmat + val allmats = blocks blocksizes blockmat in (vec,map diag allmats) end val (vec,ratdias) = @@ -1178,7 +1178,7 @@ (* Iterative deepening. *) -fun deepen f n = +fun deepen f n = (writeln ("Searching with depth limit " ^ string_of_int n) ; (f n handle Failure s => (writeln ("failed with message: " ^ s) ; deepen f (n+1)))) @@ -1197,14 +1197,14 @@ in (* FIXME: Replace tryfind by get_first !! *) fun real_nonlinear_prover proof_method ctxt = - let + let val {add,mul,neg,pow,sub,main} = Normalizer.semiring_normalizers_ord_wrapper ctxt - (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv, real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main) - fun mainf cert_choice translator (eqs,les,lts) = - let + fun mainf cert_choice translator (eqs,les,lts) = + let val eq0 = map (poly_of_term o Thm.dest_arg1 o concl) eqs val le0 = map (poly_of_term o Thm.dest_arg o concl) les val lt0 = map (poly_of_term o Thm.dest_arg o concl) lts @@ -1216,19 +1216,19 @@ val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0 fun trivial_axiom (p,ax) = case ax of - RealArith.Axiom_eq n => if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n + RealArith.Axiom_eq n => if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n else raise Failure "trivial_axiom: Not a trivial axiom" - | RealArith.Axiom_le n => if eval FuncUtil.Ctermfunc.empty p if eval FuncUtil.Ctermfunc.empty p if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n + | RealArith.Axiom_lt n => if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n else raise Failure "trivial_axiom: Not a trivial axiom" | _ => error "trivial_axiom: Not a trivial axiom" - in + in (let val th = tryfind trivial_axiom (keq @ klep @ kltp) in (fconv_rule (arg_conv (arg1_conv real_poly_conv) then_conv field_comp_conv) th, RealArith.Trivial) end) - handle Failure _ => + handle Failure _ => (let val proof = (case proof_method of Certificate certs => (* choose certificate *) @@ -1242,13 +1242,13 @@ end | Prover prover => (* call prover *) - let + let val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one) val leq = lep @ ltp fun tryall d = let val e = multidegree pol val k = if e = 0 then 0 else d div e - val eq' = map fst eq + val eq' = map fst eq in tryfind (fn i => (d,i,real_positivnullstellensatz_general prover false d eq' leq (poly_neg(poly_pow pol i)))) (0 upto k) @@ -1258,11 +1258,11 @@ map2 (fn q => fn (p,ax) => RealArith.Eqmul(q,ax)) cert_ideal eq val proofs_cone = map cterm_of_sos cert_cone val proof_ne = if null ltp then RealArith.Rational_lt Rat.one else - let val p = foldr1 RealArith.Product (map snd ltp) + let val p = foldr1 RealArith.Product (map snd ltp) in funpow i (fn q => RealArith.Product(p,q)) (RealArith.Rational_lt Rat.one) end - in - foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone) + in + foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone) end) in (translator (eqs,les,lts) proof, RealArith.Cert proof) @@ -1273,8 +1273,8 @@ fun C f x y = f y x; (* FIXME : This is very bad!!!*) -fun subst_conv eqs t = - let +fun subst_conv eqs t = + let val t' = fold (Thm.cabs o Thm.lhs_of) eqs t in Conv.fconv_rule (Thm.beta_conversion true) (fold (C combination) eqs (reflexive t')) end @@ -1285,62 +1285,62 @@ open Conv fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS val concl = Thm.dest_arg o cprop_of - val shuffle1 = + val shuffle1 = fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps) }) val shuffle2 = fconv_rule (rewr_conv @{lemma "(x + a == y) == (x == y - (a::real))" by (atomize (full)) (simp add: ring_simps)}) fun substitutable_monomial fvs tm = case term_of tm of - Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) + Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) else raise Failure "substitutable_monomial" - | @{term "op * :: real => _"}$c$(t as Free _ ) => + | @{term "op * :: real => _"}$c$(t as Free _ ) => if RealArith.is_ratconst (Thm.dest_arg1 tm) andalso not (member (op aconvc) fvs (Thm.dest_arg tm)) then (RealArith.dest_ratconst (Thm.dest_arg1 tm),Thm.dest_arg tm) else raise Failure "substitutable_monomial" - | @{term "op + :: real => _"}$s$t => + | @{term "op + :: real => _"}$s$t => (substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg tm) fvs) (Thm.dest_arg1 tm) handle Failure _ => substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg1 tm) fvs) (Thm.dest_arg tm)) | _ => raise Failure "substitutable_monomial" - fun isolate_variable v th = + fun isolate_variable v th = let val w = Thm.dest_arg1 (cprop_of th) in if v aconvc w then th else case term_of w of - @{term "op + :: real => _"}$s$t => - if Thm.dest_arg1 w aconvc v then shuffle2 th + @{term "op + :: real => _"}$s$t => + if Thm.dest_arg1 w aconvc v then shuffle2 th else isolate_variable v (shuffle1 th) | _ => error "isolate variable : This should not happen?" - end + end in fun real_nonlinear_subst_prover prover ctxt = - let + let val {add,mul,neg,pow,sub,main} = Normalizer.semiring_normalizers_ord_wrapper ctxt - (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord val (real_poly_add_conv,real_poly_mul_conv,real_poly_neg_conv, real_poly_pow_conv,real_poly_sub_conv,real_poly_conv) = (add,mul,neg,pow,sub,main) fun make_substitution th = - let + let val (c,v) = substitutable_monomial [] (Thm.dest_arg1(concl th)) val th1 = Drule.arg_cong_rule (Thm.capply @{cterm "op * :: real => _"} (RealArith.cterm_of_rat (Rat.inv c))) (mk_meta_eq th) val th2 = fconv_rule (binop_conv real_poly_mul_conv) th1 in fconv_rule (arg_conv real_poly_conv) (isolate_variable v th2) end - fun oprconv cv ct = + fun oprconv cv ct = let val g = Thm.dest_fun2 ct - in if g aconvc @{cterm "op <= :: real => _"} - orelse g aconvc @{cterm "op < :: real => _"} + in if g aconvc @{cterm "op <= :: real => _"} + orelse g aconvc @{cterm "op < :: real => _"} then arg_conv cv ct else arg1_conv cv ct end fun mainf cert_choice translator = - let + let fun substfirst(eqs,les,lts) = - ((let + ((let val eth = tryfind make_substitution eqs val modify = fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv real_poly_conv))) in substfirst - (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t + (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t aconvc @{cterm "0::real"}) (map modify eqs), map modify les,map modify lts) end) @@ -1358,51 +1358,46 @@ RealArith.gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt) end; -val known_sos_constants = - [@{term "op ==>"}, @{term "Trueprop"}, - @{term "op -->"}, @{term "op &"}, @{term "op |"}, - @{term "Not"}, @{term "op = :: bool => _"}, - @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"}, - @{term "op = :: real => _"}, @{term "op < :: real => _"}, - @{term "op <= :: real => _"}, - @{term "op + :: real => _"}, @{term "op - :: real => _"}, - @{term "op * :: real => _"}, @{term "uminus :: real => _"}, +val known_sos_constants = + [@{term "op ==>"}, @{term "Trueprop"}, + @{term "op -->"}, @{term "op &"}, @{term "op |"}, + @{term "Not"}, @{term "op = :: bool => _"}, + @{term "All :: (real => _) => _"}, @{term "Ex :: (real => _) => _"}, + @{term "op = :: real => _"}, @{term "op < :: real => _"}, + @{term "op <= :: real => _"}, + @{term "op + :: real => _"}, @{term "op - :: real => _"}, + @{term "op * :: real => _"}, @{term "uminus :: real => _"}, @{term "op / :: real => _"}, @{term "inverse :: real => _"}, - @{term "op ^ :: real => _"}, @{term "abs :: real => _"}, + @{term "op ^ :: real => _"}, @{term "abs :: real => _"}, @{term "min :: real => _"}, @{term "max :: real => _"}, @{term "0::real"}, @{term "1::real"}, @{term "number_of :: int => real"}, @{term "number_of :: int => nat"}, - @{term "Int.Bit0"}, @{term "Int.Bit1"}, + @{term "Int.Bit0"}, @{term "Int.Bit1"}, @{term "Int.Pls"}, @{term "Int.Min"}]; -fun check_sos kcts ct = +fun check_sos kcts ct = let val t = term_of ct - val _ = if not (null (Term.add_tfrees t []) - andalso null (Term.add_tvars t [])) + val _ = if not (null (Term.add_tfrees t []) + andalso null (Term.add_tvars t [])) then error "SOS: not sos. Additional type varables" else () val fs = Term.add_frees t [] - val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs + val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs then error "SOS: not sos. Variables with type not real" else () val vs = Term.add_vars t [] - val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) vs + val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) vs then error "SOS: not sos. Variables with type not real" else () val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t []) - val _ = if null ukcs then () + val _ = if null ukcs then () else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs)) in () end -fun core_sos_tac print_cert prover ctxt i = +fun core_sos_tac print_cert prover = SUBPROOF (fn {concl, context, ...} => let - fun core_tac {concl, context, ...} = - let - val _ = check_sos known_sos_constants concl - val (ths, certificates) = real_sos prover context (Thm.dest_arg concl) - val _ = print_cert certificates - in rtac ths i end - in - SUBPROOF core_tac ctxt i - end + val _ = check_sos known_sos_constants concl + val (ths, certificates) = real_sos prover context (Thm.dest_arg concl) + val _ = print_cert certificates + in rtac ths 1 end) fun default_SOME f NONE v = SOME v | default_SOME f (SOME v) _ = SOME v; @@ -1415,7 +1410,7 @@ val is_numeral = can (HOLogic.dest_number o term_of) in fun get_denom b ct = case term_of ct of - @{term "op / :: real => _"} $ _ $ _ => + @{term "op / :: real => _"} $ _ $ _ => if is_numeral (Thm.dest_arg ct) then get_denom b (Thm.dest_arg1 ct) else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct)) (Thm.dest_arg ct, b) | @{term "op < :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct) @@ -1424,15 +1419,15 @@ | _ => NONE end; -fun elim_one_denom_tac ctxt = -CSUBGOAL (fn (P,i) => - case get_denom false P of +fun elim_one_denom_tac ctxt = +CSUBGOAL (fn (P,i) => + case get_denom false P of NONE => no_tac - | SOME (d,ord) => - let - val ss = simpset_of ctxt addsimps @{thms field_simps} + | SOME (d,ord) => + let + val ss = simpset_of ctxt addsimps @{thms field_simps} addsimps [@{thm nonzero_power_divide}, @{thm power_divide}] - val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] + val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto} else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast}) in (rtac th i THEN Simplifier.asm_full_simp_tac ss i) end);