# HG changeset patch # User wenzelm # Date 1314720768 -7200 # Node ID 4877c4e184e56eacdd9fd92001bb4bd86d41b450 # Parent 1ad3159323dc816b282781a6dd57cb23314f0bb9 tuned document; diff -r 1ad3159323dc -r 4877c4e184e5 src/FOL/ex/Nat_Class.thy --- a/src/FOL/ex/Nat_Class.thy Tue Aug 30 17:53:03 2011 +0200 +++ b/src/FOL/ex/Nat_Class.thy Tue Aug 30 18:12:48 2011 +0200 @@ -26,9 +26,8 @@ and rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))" begin -definition - add :: "'a \ 'a \ 'a" (infixl "+" 60) where - "m + n = rec(m, n, \x y. Suc(y))" +definition add :: "'a \ 'a \ 'a" (infixl "+" 60) + where "m + n = rec(m, n, \x y. Suc(y))" lemma Suc_n_not_n: "Suc(k) \ (k::'a)" apply (rule_tac n = k in induct) diff -r 1ad3159323dc -r 4877c4e184e5 src/FOL/ex/Natural_Numbers.thy --- a/src/FOL/ex/Natural_Numbers.thy Tue Aug 30 17:53:03 2011 +0200 +++ b/src/FOL/ex/Natural_Numbers.thy Tue Aug 30 18:12:48 2011 +0200 @@ -46,9 +46,8 @@ qed -definition - add :: "[nat, nat] => nat" (infixl "+" 60) where - "m + n = rec(m, n, \x y. Suc(y))" +definition add :: "nat => nat => nat" (infixl "+" 60) + where "m + n = rec(m, n, \x y. Suc(y))" lemma add_0 [simp]: "0 + n = n" unfolding add_def by (rule rec_0)