# HG changeset patch # User huffman # Date 1179076536 -7200 # Node ID 48dc37776d1eea04b721d97ea728a49cc32f2b90 # Parent 372e3471fca2233a4c0b1a90228341389e3bc18e add lemma power_eq_imp_eq_base diff -r 372e3471fca2 -r 48dc37776d1e src/HOL/Power.thy --- a/src/HOL/Power.thy Sun May 13 18:16:49 2007 +0200 +++ b/src/HOL/Power.thy Sun May 13 19:15:36 2007 +0200 @@ -319,6 +319,11 @@ ==> a = (b::'a::{ordered_semidom,recpower})" by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym) +lemma power_eq_imp_eq_base: + fixes a b :: "'a::{ordered_semidom,recpower}" + shows "\a ^ n = b ^ n; 0 \ a; 0 \ b; 0 < n\ \ a = b" +by (cases n, simp_all, rule power_inject_base) + subsection{*Exponentiation for the Natural Numbers*}