# HG changeset patch # User wenzelm # Date 1435306833 -7200 # Node ID 48fdff264eb2be9c29d8914e2f34cb5a456340e4 # Parent a645a0e6d790379ab78aead96fbd13d1885c619a tuned whitespace; diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Algebra/Lattice.thy Fri Jun 26 10:20:33 2015 +0200 @@ -589,7 +589,7 @@ lemma (in weak_upper_semilattice) finite_sup_insertI: assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l" and xA: "finite A" "x \ carrier L" "A \ carrier L" - shows "P (\ (insert x A))" + shows "P (\(insert x A))" proof (cases "A = {}") case True with P and xA show ?thesis by (simp add: finite_sup_least) @@ -828,7 +828,7 @@ lemma (in weak_lower_semilattice) finite_inf_insertI: assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i" and xA: "finite A" "x \ carrier L" "A \ carrier L" - shows "P (\ (insert x A))" + shows "P (\(insert x A))" proof (cases "A = {}") case True with P and xA show ?thesis by (simp add: finite_inf_greatest) @@ -856,7 +856,7 @@ lemma (in weak_lower_semilattice) inf_of_two_greatest: "[| x \ carrier L; y \ carrier L |] ==> - greatest L (\ {x, y}) (Lower L {x, y})" + greatest L (\{x, y}) (Lower L {x, y})" proof (unfold inf_def) assume L: "x \ carrier L" "y \ carrier L" with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast @@ -904,8 +904,8 @@ proof - (* FIXME: improved simp, see weak_join_assoc above *) have "(x \ y) \ z = z \ (x \ y)" by (simp only: meet_comm) - also from L have "... .= \ {z, x, y}" by (simp add: weak_meet_assoc_lemma) - also from L have "... = \ {x, y, z}" by (simp add: insert_commute) + also from L have "... .= \{z, x, y}" by (simp add: weak_meet_assoc_lemma) + also from L have "... = \{x, y, z}" by (simp add: insert_commute) also from L have "... .= x \ (y \ z)" by (simp add: weak_meet_assoc_lemma [symmetric]) finally show ?thesis by (simp add: L) qed @@ -1286,15 +1286,15 @@ next fix B assume "B \ carrier ?L" - then have "least ?L (\ B) (Upper ?L B)" + then have "least ?L (\B) (Upper ?L B)" by (fastforce intro!: least_UpperI simp: Upper_def) then show "EX s. least ?L s (Upper ?L B)" .. next fix B assume "B \ carrier ?L" - then have "greatest ?L (\ B \ A) (Lower ?L B)" - txt {* @{term "\ B"} is not the infimum of @{term B}: - @{term "\ {} = UNIV"} which is in general bigger than @{term "A"}! *} + then have "greatest ?L (\B \ A) (Lower ?L B)" + txt {* @{term "\B"} is not the infimum of @{term B}: + @{term "\{} = UNIV"} which is in general bigger than @{term "A"}! *} by (fastforce intro!: greatest_LowerI simp: Lower_def) then show "EX i. greatest ?L i (Lower ?L B)" .. qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/BNF_Cardinal_Order_Relation.thy --- a/src/HOL/BNF_Cardinal_Order_Relation.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/BNF_Cardinal_Order_Relation.thy Fri Jun 26 10:20:33 2015 +0200 @@ -1051,10 +1051,10 @@ lemma card_of_UNION_ordLeq_infinite: assumes INF: "\finite B" and LEQ_I: "|I| \o |B|" and LEQ: "\i \ I. |A i| \o |B|" -shows "|\ i \ I. A i| \o |B|" +shows "|\i \ I. A i| \o |B|" proof(cases "I = {}", simp add: card_of_empty) assume *: "I \ {}" - have "|\ i \ I. A i| \o |SIGMA i : I. A i|" + have "|\i \ I. A i| \o |SIGMA i : I. A i|" using card_of_UNION_Sigma by blast moreover have "|SIGMA i : I. A i| \o |B|" using assms card_of_Sigma_ordLeq_infinite by blast @@ -1064,14 +1064,14 @@ corollary card_of_UNION_ordLeq_infinite_Field: assumes INF: "\finite (Field r)" and r: "Card_order r" and LEQ_I: "|I| \o r" and LEQ: "\i \ I. |A i| \o r" -shows "|\ i \ I. A i| \o r" +shows "|\i \ I. A i| \o r" proof- let ?B = "Field r" have 1: "r =o |?B| \ |?B| =o r" using r card_of_Field_ordIso ordIso_symmetric by blast hence "|I| \o |?B|" "\i \ I. |A i| \o |?B|" using LEQ_I LEQ ordLeq_ordIso_trans by blast+ - hence "|\ i \ I. A i| \o |?B|" using INF LEQ + hence "|\i \ I. A i| \o |?B|" using INF LEQ card_of_UNION_ordLeq_infinite by blast thus ?thesis using 1 ordLeq_ordIso_trans by blast qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/BNF_Wellorder_Embedding.thy --- a/src/HOL/BNF_Wellorder_Embedding.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/BNF_Wellorder_Embedding.thy Fri Jun 26 10:20:33 2015 +0200 @@ -26,7 +26,7 @@ assumes WELL: "Well_order r" and OF: "\ i. i \ I \ wo_rel.ofilter r (A i)" and INJ: "\ i. i \ I \ inj_on f (A i)" -shows "inj_on f (\ i \ I. A i)" +shows "inj_on f (\i \ I. A i)" proof- have "wo_rel r" using WELL by (simp add: wo_rel_def) hence "\ i j. \i \ I; j \ I\ \ A i <= A j \ A j <= A i" @@ -487,7 +487,7 @@ have Well': "wo_rel r'" using WELL' unfolding wo_rel_def . have OF: "wo_rel.ofilter r (underS r a)" by (auto simp add: Well wo_rel.underS_ofilter) - hence UN: "underS r a = (\ b \ underS r a. under r b)" + hence UN: "underS r a = (\b \ underS r a. under r b)" using Well wo_rel.ofilter_under_UNION[of r "underS r a"] by blast (* Gather facts about elements of underS r a *) {fix b assume *: "b \ underS r a" @@ -520,13 +520,13 @@ (* *) have OF': "wo_rel.ofilter r' (f`(underS r a))" proof- - have "f`(underS r a) = f`(\ b \ underS r a. under r b)" + have "f`(underS r a) = f`(\b \ underS r a. under r b)" using UN by auto - also have "\ = (\ b \ underS r a. f`(under r b))" by blast - also have "\ = (\ b \ underS r a. (under r' (f b)))" + also have "\ = (\b \ underS r a. f`(under r b))" by blast + also have "\ = (\b \ underS r a. (under r' (f b)))" using bFact by auto finally - have "f`(underS r a) = (\ b \ underS r a. (under r' (f b)))" . + have "f`(underS r a) = (\b \ underS r a. (under r' (f b)))" . thus ?thesis using Well' bFact wo_rel.ofilter_UNION[of r' "underS r a" "\ b. under r' (f b)"] by fastforce diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/BNF_Wellorder_Relation.thy --- a/src/HOL/BNF_Wellorder_Relation.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/BNF_Wellorder_Relation.thy Fri Jun 26 10:20:33 2015 +0200 @@ -478,20 +478,20 @@ qed lemma ofilter_UNION: -"(\ i. i \ I \ ofilter(A i)) \ ofilter (\ i \ I. A i)" +"(\ i. i \ I \ ofilter(A i)) \ ofilter (\i \ I. A i)" unfolding ofilter_def by blast lemma ofilter_under_UNION: assumes "ofilter A" -shows "A = (\ a \ A. under a)" +shows "A = (\a \ A. under a)" proof have "\a \ A. under a \ A" using assms ofilter_def by auto - thus "(\ a \ A. under a) \ A" by blast + thus "(\a \ A. under a) \ A" by blast next have "\a \ A. a \ under a" using REFL Refl_under_in[of r] assms ofilter_def[of A] by blast - thus "A \ (\ a \ A. under a)" by blast + thus "A \ (\a \ A. under a)" by blast qed subsubsection{* Other properties *} diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Cardinals/Cardinal_Arithmetic.thy --- a/src/HOL/Cardinals/Cardinal_Arithmetic.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Cardinals/Cardinal_Arithmetic.thy Fri Jun 26 10:20:33 2015 +0200 @@ -297,8 +297,8 @@ assumes "|A| \o k" and "\ a \ A. |vimage f {a}| \o k" and "Cinfinite k" shows "|vimage f A| \o k" proof- - have "vimage f A = (\ a \ A. vimage f {a})" by auto - also have "|\ a \ A. vimage f {a}| \o k" + have "vimage f A = (\a \ A. vimage f {a})" by auto + also have "|\a \ A. vimage f {a}| \o k" using UNION_Cinfinite_bound[OF assms] . finally show ?thesis . qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Cardinals/Cardinal_Order_Relation.thy --- a/src/HOL/Cardinals/Cardinal_Order_Relation.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Cardinals/Cardinal_Order_Relation.thy Fri Jun 26 10:20:33 2015 +0200 @@ -715,7 +715,7 @@ lemma lists_def2: "lists A = {l. set l \ A}" using in_listsI by blast -lemma lists_UNION_nlists: "lists A = (\ n. nlists A n)" +lemma lists_UNION_nlists: "lists A = (\n. nlists A n)" unfolding lists_def2 nlists_def by blast lemma card_of_lists: "|A| \o |lists A|" @@ -1455,7 +1455,7 @@ unfolding Func_option_def Pfunc_def by auto lemma Pfunc_Func_option: -"Pfunc A B = (\ A' \ Pow A. Func_option A' B)" +"Pfunc A B = (\A' \ Pow A. Func_option A' B)" proof safe fix f assume f: "f \ Pfunc A B" show "f \ (\A'\Pow A. Func_option A' B)" @@ -1504,7 +1504,7 @@ assumes "B \ {}" shows "|Pfunc A B| \o |Pow A <*> Func_option A B|" proof- - have "|Pfunc A B| =o |\ A' \ Pow A. Func_option A' B|" (is "_ =o ?K") + have "|Pfunc A B| =o |\A' \ Pow A. Func_option A' B|" (is "_ =o ?K") unfolding Pfunc_Func_option by(rule card_of_refl) also have "?K \o |Sigma (Pow A) (\ A'. Func_option A' B)|" using card_of_UNION_Sigma . also have "|Sigma (Pow A) (\ A'. Func_option A' B)| \o |Pow A <*> Func_option A B|" @@ -1635,14 +1635,14 @@ qed lemma relChain_stabilize: -assumes rc: "relChain r As" and AsB: "(\ i \ Field r. As i) \ B" and Br: "|B| i \ Field r. As i) \ B" and Br: "|B| finite (Field r)" and cr: "Card_order r" shows "\ i \ Field r. As (succ r i) = As i" proof(rule ccontr, auto) have 0: "wo_rel r" and 00: "Well_order r" unfolding wo_rel_def by (metis card_order_on_well_order_on cr)+ have L: "isLimOrd r" using ir cr by (metis card_order_infinite_isLimOrd) - have AsBs: "(\ i \ Field r. As (succ r i)) \ B" + have AsBs: "(\i \ Field r. As (succ r i)) \ B" using AsB L apply safe by (metis "0" UN_I set_mp wo_rel.isLimOrd_succ) assume As_s: "\i\Field r. As (succ r i) \ As i" have 1: "\i j. (i,j) \ r \ i \ j \ As i \ As j" @@ -1719,7 +1719,7 @@ obtain j0 where j0: "j0 \ Field r" using Fi by auto def g \ "\ a. if F a \ {} then gg a else j0" have g: "\ a \ A. \ u \ F a. (f (a,u),g a) \ r" using gg unfolding g_def by auto - hence 1: "Field r \ (\ a \ A. under r (g a))" + hence 1: "Field r \ (\a \ A. under r (g a))" using f[symmetric] unfolding under_def image_def by auto have gA: "g ` A \ Field r" using gg j0 unfolding Field_def g_def by auto moreover have "cofinal (g ` A) r" unfolding cofinal_def proof safe @@ -1751,10 +1751,10 @@ {assume Kr: "|K| a \ Field r. f a \ K \ a \ f a \ (a, f a) \ r" using cof unfolding cofinal_def by metis - hence "Field r \ (\ a \ K. underS r a)" unfolding underS_def by auto - hence "r \o |\ a \ K. underS r a|" using cr + hence "Field r \ (\a \ K. underS r a)" unfolding underS_def by auto + hence "r \o |\a \ K. underS r a|" using cr by (metis Card_order_iff_ordLeq_card_of card_of_mono1 ordLeq_transitive) - also have "|\ a \ K. underS r a| \o |SIGMA a: K. underS r a|" by (rule card_of_UNION_Sigma) + also have "|\a \ K. underS r a| \o |SIGMA a: K. underS r a|" by (rule card_of_UNION_Sigma) also {have "\ a \ K. |underS r a| a. a \ A \ |F a| a \ A. F a| a \ A. F a| a \ A. F a| \o |SIGMA a : A. F a|" + have "|\a \ A. F a| \o |SIGMA a : A. F a|" using card_of_UNION_Sigma by blast thus ?thesis using assms stable_elim ordLeq_ordLess_trans by blast qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Cardinals/Order_Relation_More.thy --- a/src/HOL/Cardinals/Order_Relation_More.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Cardinals/Order_Relation_More.thy Fri Jun 26 10:20:33 2015 +0200 @@ -133,12 +133,12 @@ lemma Refl_under_Under: assumes REFL: "Refl r" and NE: "A \ {}" -shows "Under r A = (\ a \ A. under r a)" +shows "Under r A = (\a \ A. under r a)" proof - show "Under r A \ (\ a \ A. under r a)" + show "Under r A \ (\a \ A. under r a)" by(unfold Under_def under_def, auto) next - show "(\ a \ A. under r a) \ Under r A" + show "(\a \ A. under r a) \ Under r A" proof(auto) fix x assume *: "\xa \ A. x \ under r xa" @@ -157,12 +157,12 @@ lemma Refl_underS_UnderS: assumes REFL: "Refl r" and NE: "A \ {}" -shows "UnderS r A = (\ a \ A. underS r a)" +shows "UnderS r A = (\a \ A. underS r a)" proof - show "UnderS r A \ (\ a \ A. underS r a)" + show "UnderS r A \ (\a \ A. underS r a)" by(unfold UnderS_def underS_def, auto) next - show "(\ a \ A. underS r a) \ UnderS r A" + show "(\a \ A. underS r a) \ UnderS r A" proof(auto) fix x assume *: "\xa \ A. x \ underS r xa" @@ -181,12 +181,12 @@ lemma Refl_above_Above: assumes REFL: "Refl r" and NE: "A \ {}" -shows "Above r A = (\ a \ A. above r a)" +shows "Above r A = (\a \ A. above r a)" proof - show "Above r A \ (\ a \ A. above r a)" + show "Above r A \ (\a \ A. above r a)" by(unfold Above_def above_def, auto) next - show "(\ a \ A. above r a) \ Above r A" + show "(\a \ A. above r a) \ Above r A" proof(auto) fix x assume *: "\xa \ A. x \ above r xa" @@ -205,12 +205,12 @@ lemma Refl_aboveS_AboveS: assumes REFL: "Refl r" and NE: "A \ {}" -shows "AboveS r A = (\ a \ A. aboveS r a)" +shows "AboveS r A = (\a \ A. aboveS r a)" proof - show "AboveS r A \ (\ a \ A. aboveS r a)" + show "AboveS r A \ (\a \ A. aboveS r a)" by(unfold AboveS_def aboveS_def, auto) next - show "(\ a \ A. aboveS r a) \ AboveS r A" + show "(\a \ A. aboveS r a) \ AboveS r A" proof(auto) fix x assume *: "\xa \ A. x \ aboveS r xa" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Cardinals/Wellorder_Embedding.thy --- a/src/HOL/Cardinals/Wellorder_Embedding.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Cardinals/Wellorder_Embedding.thy Fri Jun 26 10:20:33 2015 +0200 @@ -17,7 +17,7 @@ assumes WELL: "Well_order r" and OF: "\ i. i \ I \ ofilter r (A i)" and BIJ: "\ i. i \ I \ bij_betw f (A i) (A' i)" -shows "bij_betw f (\ i \ I. A i) (\ i \ I. A' i)" +shows "bij_betw f (\i \ I. A i) (\i \ I. A' i)" proof- have "wo_rel r" using WELL by (simp add: wo_rel_def) hence "\ i j. \i \ I; j \ I\ \ A i \ A j \ A j \ A i" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Cardinals/Wellorder_Relation.thy --- a/src/HOL/Cardinals/Wellorder_Relation.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Cardinals/Wellorder_Relation.thy Fri Jun 26 10:20:33 2015 +0200 @@ -437,7 +437,7 @@ unfolding ofilter_def by blast lemma ofilter_INTER: -"\I \ {}; \ i. i \ I \ ofilter(A i)\ \ ofilter (\ i \ I. A i)" +"\I \ {}; \ i. i \ I \ ofilter(A i)\ \ ofilter (\i \ I. A i)" unfolding ofilter_def by blast lemma ofilter_Inter: diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Complete_Lattices.thy Fri Jun 26 10:20:33 2015 +0200 @@ -1204,7 +1204,7 @@ "\(B ` A) = (\x\A. B x)" by (fact Sup_image_eq) -lemma Union_SetCompr_eq: "\ {f x| x. P x} = {a. \x. P x \ a \ f x}" +lemma Union_SetCompr_eq: "\{f x| x. P x} = {a. \x. P x \ a \ f x}" by blast lemma UN_iff [simp]: "b \ (\x\A. B x) \ (\x\A. b \ B x)" @@ -1360,7 +1360,7 @@ lemma inj_on_UNION_chain: assumes CH: "\ i j. \i \ I; j \ I\ \ A i \ A j \ A j \ A i" and INJ: "\ i. i \ I \ inj_on f (A i)" - shows "inj_on f (\ i \ I. A i)" + shows "inj_on f (\i \ I. A i)" proof - { fix i j x y @@ -1390,11 +1390,11 @@ lemma bij_betw_UNION_chain: assumes CH: "\ i j. \i \ I; j \ I\ \ A i \ A j \ A j \ A i" and BIJ: "\ i. i \ I \ bij_betw f (A i) (A' i)" - shows "bij_betw f (\ i \ I. A i) (\ i \ I. A' i)" + shows "bij_betw f (\i \ I. A i) (\i \ I. A' i)" proof (unfold bij_betw_def, auto) have "\ i. i \ I \ inj_on f (A i)" using BIJ bij_betw_def[of f] by auto - thus "inj_on f (\ i \ I. A i)" + thus "inj_on f (\i \ I. A i)" using CH inj_on_UNION_chain[of I A f] by auto next fix i x diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Datatype_Examples/Derivation_Trees/Gram_Lang.thy --- a/src/HOL/Datatype_Examples/Derivation_Trees/Gram_Lang.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Datatype_Examples/Derivation_Trees/Gram_Lang.thy Fri Jun 26 10:20:33 2015 +0200 @@ -257,7 +257,7 @@ qed corollary Fr_subtr: -"Fr ns tr = \ {Fr ns tr' | tr'. subtr ns tr' tr}" +"Fr ns tr = \{Fr ns tr' | tr'. subtr ns tr' tr}" unfolding Fr_def proof safe fix t assume t: "inFr ns tr t" hence "root tr \ ns" by (rule inFr_root_in) thus "t \ \{{t. inFr ns tr' t} |tr'. subtr ns tr' tr}" @@ -272,7 +272,7 @@ by (metis (lifting) subtr.Step) corollary Fr_subtr_cont: -"Fr ns tr = \ {Inl -` cont tr' | tr'. subtr ns tr' tr}" +"Fr ns tr = \{Inl -` cont tr' | tr'. subtr ns tr' tr}" unfolding Fr_def apply safe apply (frule inFr_subtr) @@ -290,7 +290,7 @@ qed corollary Itr_subtr: -"Itr ns tr = \ {Itr ns tr' | tr'. subtr ns tr' tr}" +"Itr ns tr = \{Itr ns tr' | tr'. subtr ns tr' tr}" unfolding Itr_def apply safe apply (metis (lifting, mono_tags) UnionI inItr_root_in mem_Collect_eq subtr.Refl) by (metis subtr_inItr) @@ -1121,7 +1121,7 @@ assumes r: "regular tr" and In: "root tr \ ns" shows "Fr ns tr = Inl -` (cont tr) \ - \ {Fr (ns - {root tr}) tr' | tr'. Inr tr' \ cont tr}" + \{Fr (ns - {root tr}) tr' | tr'. Inr tr' \ cont tr}" unfolding Fr_def using In inFr.Base regular_inFr[OF assms] apply safe apply (simp, metis (full_types) mem_Collect_eq) @@ -1161,7 +1161,7 @@ lemma Lr_rec_in: assumes n: "n \ ns" shows "Lr ns n \ -{Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. +{Inl -` tns \ (\{K n' | n'. Inr n' \ tns}) | tns K. (n,tns) \ P \ (\ n'. Inr n' \ tns \ K n' \ Lr (ns - {n}) n')}" (is "Lr ns n \ {?F tns K | tns K. (n,tns) \ P \ ?\ tns K}") @@ -1207,7 +1207,7 @@ lemma L_rec_in: assumes n: "n \ ns" shows " -{Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. +{Inl -` tns \ (\{K n' | n'. Inr n' \ tns}) | tns K. (n,tns) \ P \ (\ n'. Inr n' \ tns \ K n' \ L (ns - {n}) n')} \ L ns n" @@ -1247,7 +1247,7 @@ function LL where "LL ns n = (if n \ ns then {{}} else - {Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. + {Inl -` tns \ (\{K n' | n'. Inr n' \ tns}) | tns K. (n,tns) \ P \ (\ n'. Inr n' \ tns \ K n' \ LL (ns - {n}) n')})" by(pat_completeness, auto) diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Datatype_Examples/Lambda_Term.thy --- a/src/HOL/Datatype_Examples/Lambda_Term.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Datatype_Examples/Lambda_Term.thy Fri Jun 26 10:20:33 2015 +0200 @@ -27,14 +27,14 @@ "varsOf (Var a) = {a}" | "varsOf (App f x) = varsOf f \ varsOf x" | "varsOf (Lam x b) = {x} \ varsOf b" -| "varsOf (Lt F t) = varsOf t \ (\ { {x} \ X | x X. (x,X) |\| fimage (map_prod id varsOf) F})" +| "varsOf (Lt F t) = varsOf t \ (\{{x} \ X | x X. (x,X) |\| fimage (map_prod id varsOf) F})" primrec fvarsOf :: "'a trm \ 'a set" where "fvarsOf (Var x) = {x}" | "fvarsOf (App t1 t2) = fvarsOf t1 \ fvarsOf t2" | "fvarsOf (Lam x t) = fvarsOf t - {x}" | "fvarsOf (Lt xts t) = fvarsOf t - {x | x X. (x,X) |\| fimage (map_prod id varsOf) xts} \ - (\ {X | x X. (x,X) |\| fimage (map_prod id varsOf) xts})" + (\{X | x X. (x,X) |\| fimage (map_prod id varsOf) xts})" lemma diff_Un_incl_triv: "\A \ D; C \ E\ \ A - B \ C \ D \ E" by blast diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Finite_Set.thy Fri Jun 26 10:20:33 2015 +0200 @@ -1433,7 +1433,7 @@ lemma insert_partition: "\ x \ F; \c1 \ insert x F. \c2 \ insert x F. c1 \ c2 \ c1 \ c2 = {} \ - \ x \ \ F = {}" + \ x \ \F = {}" by auto lemma finite_psubset_induct[consumes 1, case_names psubset]: @@ -1486,13 +1486,13 @@ text{* main cardinality theorem *} lemma card_partition [rule_format]: "finite C ==> - finite (\ C) --> + finite (\C) --> (\c\C. card c = k) --> (\c1 \ C. \c2 \ C. c1 \ c2 --> c1 \ c2 = {}) --> - k * card(C) = card (\ C)" + k * card(C) = card (\C)" apply (erule finite_induct, simp) apply (simp add: card_Un_disjoint insert_partition - finite_subset [of _ "\ (insert x F)"]) + finite_subset [of _ "\(insert x F)"]) done lemma card_eq_UNIV_imp_eq_UNIV: diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/HOLCF/Cont.thy --- a/src/HOL/HOLCF/Cont.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/HOLCF/Cont.thy Fri Jun 26 10:20:33 2015 +0200 @@ -91,7 +91,7 @@ text {* continuity implies preservation of lubs *} lemma cont2contlubE: - "\cont f; chain Y\ \ f (\ i. Y i) = (\ i. f (Y i))" + "\cont f; chain Y\ \ f (\i. Y i) = (\i. f (Y i))" apply (rule lub_eqI [symmetric]) apply (erule (1) contE) done diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Hilbert_Choice.thy --- a/src/HOL/Hilbert_Choice.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Hilbert_Choice.thy Fri Jun 26 10:20:33 2015 +0200 @@ -408,20 +408,20 @@ qed lemma Ex_inj_on_UNION_Sigma: - "\f. (inj_on f (\ i \ I. A i) \ f ` (\ i \ I. A i) \ (SIGMA i : I. A i))" + "\f. (inj_on f (\i \ I. A i) \ f ` (\i \ I. A i) \ (SIGMA i : I. A i))" proof let ?phi = "\ a i. i \ I \ a \ A i" let ?sm = "\ a. SOME i. ?phi a i" let ?f = "\a. (?sm a, a)" - have "inj_on ?f (\ i \ I. A i)" unfolding inj_on_def by auto + have "inj_on ?f (\i \ I. A i)" unfolding inj_on_def by auto moreover { { fix i a assume "i \ I" and "a \ A i" hence "?sm a \ I \ a \ A(?sm a)" using someI[of "?phi a" i] by auto } - hence "?f ` (\ i \ I. A i) \ (SIGMA i : I. A i)" by auto + hence "?f ` (\i \ I. A i) \ (SIGMA i : I. A i)" by auto } ultimately - show "inj_on ?f (\ i \ I. A i) \ ?f ` (\ i \ I. A i) \ (SIGMA i : I. A i)" + show "inj_on ?f (\i \ I. A i) \ ?f ` (\i \ I. A i) \ (SIGMA i : I. A i)" by auto qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Hoare/SchorrWaite.thy --- a/src/HOL/Hoare/SchorrWaite.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Hoare/SchorrWaite.thy Fri Jun 26 10:20:33 2015 +0200 @@ -17,7 +17,7 @@ definition relS :: "('a \ 'a ref) set \ ('a \ 'a) set" - where "relS M = (\ m \ M. rel m)" + where "relS M = (\m \ M. rel m)" definition addrs :: "'a ref set \ 'a set" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Library/Indicator_Function.thy --- a/src/HOL/Library/Indicator_Function.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Library/Indicator_Function.thy Fri Jun 26 10:20:33 2015 +0200 @@ -87,18 +87,18 @@ by auto then have "\n. (indicator (A (n + i)) x :: 'a) = 1" - "(indicator (\ i. A i) x :: 'a) = 1" + "(indicator (\i. A i) x :: 'a) = 1" using incseqD[OF \incseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) then show ?thesis by (rule_tac LIMSEQ_offset[of _ i]) simp qed (auto simp: indicator_def) lemma LIMSEQ_indicator_UN: - "(\k. indicator (\ i indicator (\i. A i) x" + "(\k. indicator (\i indicator (\i. A i) x" proof - - have "(\k. indicator (\ i indicator (\k. \ ik. indicator (\i indicator (\k. \ik. \ ii. A i)" + also have "(\k. \ii. A i)" by auto finally show ?thesis . qed @@ -123,7 +123,7 @@ proof - have "(\k. indicator (\i indicator (\k. \ik. \ ii. A i)" + also have "(\k. \ii. A i)" by auto finally show ?thesis . qed diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Fri Jun 26 10:20:33 2015 +0200 @@ -604,7 +604,7 @@ lemma analytic_on_Un: "f analytic_on (s \ t) \ f analytic_on s \ f analytic_on t" by (auto simp: analytic_on_def) -lemma analytic_on_Union: "f analytic_on (\ s) \ (\t \ s. f analytic_on t)" +lemma analytic_on_Union: "f analytic_on (\s) \ (\t \ s. f analytic_on t)" by (auto simp: analytic_on_def) lemma analytic_on_UN: "f analytic_on (\i\I. s i) \ (\i\I. f analytic_on (s i))" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri Jun 26 10:20:33 2015 +0200 @@ -384,7 +384,7 @@ lemma affine_UNIV[intro]: "affine UNIV" unfolding affine_def by auto -lemma affine_Inter[intro]: "(\s\f. affine s) \ affine (\ f)" +lemma affine_Inter[intro]: "(\s\f. affine s) \ affine (\f)" unfolding affine_def by auto lemma affine_Int[intro]: "affine s \ affine t \ affine (s \ t)" @@ -4552,7 +4552,7 @@ shows "\a. a \ 0 \ (\x\s. 0 \ inner a x)" proof - let ?k = "\c. {x::'a. 0 \ inner c x}" - have "frontier (cball 0 1) \ (\ (?k ` s)) \ {}" + have "frontier (cball 0 1) \ (\(?k ` s)) \ {}" apply (rule compact_imp_fip) apply (rule compact_frontier[OF compact_cball]) defer @@ -4758,7 +4758,7 @@ lemma convex_halfspace_intersection: fixes s :: "('a::euclidean_space) set" assumes "closed s" "convex s" - shows "s = \ {h. s \ h \ (\a b. h = {x. inner a x \ b})}" + shows "s = \{h. s \ h \ (\a b. h = {x. inner a x \ b})}" apply (rule set_eqI) apply rule unfolding Inter_iff Ball_def mem_Collect_eq @@ -4935,7 +4935,7 @@ fixes f :: "'a::euclidean_space set set" assumes "card f = n" and "n \ DIM('a) + 1" - and "\s\f. convex s" "\t\f. card t = DIM('a) + 1 \ \ t \ {}" + and "\s\f. convex s" "\t\f. card t = DIM('a) + 1 \ \t \ {}" shows "\f \ {}" using assms proof (induct n arbitrary: f) @@ -5033,7 +5033,7 @@ lemma helly: fixes f :: "'a::euclidean_space set set" assumes "card f \ DIM('a) + 1" "\s\f. convex s" - and "\t\f. card t = DIM('a) + 1 \ \ t \ {}" + and "\t\f. card t = DIM('a) + 1 \ \t \ {}" shows "\f \ {}" apply (rule helly_induct) using assms @@ -7756,7 +7756,7 @@ have "\{closure S |S. S \ I} \ closure (\{rel_interior S |S. S \ I})" using convex_closure_rel_interior_inter assms by auto moreover - have "closure (\{rel_interior S |S. S \ I}) \ closure (\ I)" + have "closure (\{rel_interior S |S. S \ I}) \ closure (\I)" using rel_interior_inter_aux closure_mono[of "\{rel_interior S |S. S \ I}" "\I"] by auto ultimately show ?thesis @@ -8750,7 +8750,7 @@ done ultimately have "convex hull (\(K ` I)) \ K0" unfolding K0_def - using hull_minimal[of _ "convex hull (\ (K ` I))" "cone"] + using hull_minimal[of _ "convex hull (\(K ` I))" "cone"] by blast then have "K0 = convex hull (\(K ` I))" using geq by auto diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Fri Jun 26 10:20:33 2015 +0200 @@ -648,7 +648,7 @@ lemma gauge_inters: assumes "finite s" and "\d\s. gauge (f d)" - shows "gauge (\x. \ {f d x | d. d \ s})" + shows "gauge (\x. \{f d x | d. d \ s})" proof - have *: "\x. {f d x |d. d \ s} = (\d. f d x) ` s" by auto @@ -871,7 +871,7 @@ assumes "finite f" and "f \ {}" and "\s\f. \p. p division_of (s::('a::euclidean_space) set)" - shows "\p. p division_of (\ f)" + shows "\p. p division_of (\f)" using assms proof (induct f rule: finite_induct) case (insert x f) @@ -1066,7 +1066,7 @@ done } then have "\x. x \ p \ \d. d division_of \(q x - {x})" by (meson Diff_subset division_of_subset) - then have "\d. d division_of \ ((\i. \(q i - {i})) ` p)" + then have "\d. d division_of \((\i. \(q i - {i})) ` p)" apply - apply (rule elementary_inters [OF finite_imageI[OF p(1)]]) apply (auto simp: False elementary_inters [OF finite_imageI[OF p(1)]]) @@ -1669,7 +1669,7 @@ unfolding fine_def by auto lemma fine_inters: - "(\x. \ {f d x | d. d \ s}) fine p \ (\d\s. (f d) fine p)" + "(\x. \{f d x | d. d \ s}) fine p \ (\d\s. (f d) fine p)" unfolding fine_def by blast lemma fine_union: "d fine p1 \ d fine p2 \ d fine (p1 \ p2)" @@ -1851,7 +1851,7 @@ by (blast intro: that) } assume as: "\c d. ?PP c d \ P (cbox c d)" - have "P (\ ?A)" + have "P (\?A)" proof (rule UN_cases) let ?B = "(\s. cbox (\i\Basis. (if i \ s then a\i else (a\i + b\i) / 2) *\<^sub>R i::'a) (\i\Basis. (if i \ s then (a\i + b\i) / 2 else b\i) *\<^sub>R i)) ` {s. s \ Basis}" @@ -1926,7 +1926,7 @@ qed qed qed - also have "\ ?A = cbox a b" + also have "\?A = cbox a b" proof (rule set_eqI,rule) fix x assume "x \ \?A" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri Jun 26 10:20:33 2015 +0200 @@ -413,7 +413,7 @@ subsection \General notion of a topology as a value\ definition "istopology L \ - L {} \ (\S T. L S \ L T \ L (S \ T)) \ (\K. Ball K L \ L (\ K))" + L {} \ (\S T. L S \ L T \ L (S \ T)) \ (\K. Ball K L \ L (\K))" typedef 'a topology = "{L::('a set) \ bool. istopology L}" morphisms "openin" "topology" @@ -462,7 +462,7 @@ lemma openin_Int[intro]: "openin U S \ openin U T \ openin U (S \ T)" using openin_clauses by simp -lemma openin_Union[intro]: "(\S \K. openin U S) \ openin U (\ K)" +lemma openin_Union[intro]: "(\S \K. openin U S) \ openin U (\K)" using openin_clauses by simp lemma openin_Un[intro]: "openin U S \ openin U T \ openin U (S \ T)" @@ -501,13 +501,13 @@ lemma closedin_Un[intro]: "closedin U S \ closedin U T \ closedin U (S \ T)" by (auto simp add: Diff_Un closedin_def) -lemma Diff_Inter[intro]: "A - \S = \ {A - s|s. s\S}" +lemma Diff_Inter[intro]: "A - \S = \{A - s|s. s\S}" by auto lemma closedin_Inter[intro]: assumes Ke: "K \ {}" and Kc: "\S \K. closedin U S" - shows "closedin U (\ K)" + shows "closedin U (\K)" using Ke Kc unfolding closedin_def Diff_Inter by auto lemma closedin_Int[intro]: "closedin U S \ closedin U T \ closedin U (S \ T)" @@ -575,7 +575,7 @@ by blast have "\K = (\Sk) \ V" using Sk by auto - moreover have "openin U (\ Sk)" + moreover have "openin U (\Sk)" using Sk by (auto simp add: subset_eq) ultimately have "?L (\K)" by blast } diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Nominal/Examples/Class2.thy --- a/src/HOL/Nominal/Examples/Class2.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Nominal/Examples/Class2.thy Fri Jun 26 10:20:33 2015 +0200 @@ -2888,8 +2888,8 @@ and X::"('a::pt_name) set set" and pi2::"coname prm" and Y::"('b::pt_coname) set set" - shows "(pi1\(\ X)) = \ (pi1\X)" - and "(pi2\(\ Y)) = \ (pi2\Y)" + shows "(pi1\(\X)) = \(pi1\X)" + and "(pi2\(\Y)) = \(pi2\Y)" apply(auto simp add: perm_set_def) apply(rule_tac x="(rev pi1)\x" in exI) apply(perm_simp) diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Nominal/Nominal.thy --- a/src/HOL/Nominal/Nominal.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Nominal/Nominal.thy Fri Jun 26 10:20:33 2015 +0200 @@ -1888,9 +1888,9 @@ assumes pt: "pt TYPE('a) TYPE('x)" and at: "at TYPE ('x)" and fs: "fs TYPE('a) TYPE('x)" - shows "((supp x)::'x set) = (\ {S. finite S \ S supports x})" + shows "((supp x)::'x set) = (\{S. finite S \ S supports x})" proof (rule equalityI) - show "((supp x)::'x set) \ (\ {S. finite S \ S supports x})" + show "((supp x)::'x set) \ (\{S. finite S \ S supports x})" proof (clarify) fix S c assume b: "c\((supp x)::'x set)" and "finite (S::'x set)" and "S supports x" @@ -1898,7 +1898,7 @@ with b show "c\S" by force qed next - show "(\ {S. finite S \ S supports x}) \ ((supp x)::'x set)" + show "(\{S. finite S \ S supports x}) \ ((supp x)::'x set)" proof (clarify, simp) fix c assume d: "\(S::'x set). finite S \ S supports x \ c\S" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Bochner_Integration.thy --- a/src/HOL/Probability/Bochner_Integration.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Bochner_Integration.thy Fri Jun 26 10:20:33 2015 +0200 @@ -83,7 +83,7 @@ by (rule finite_subset) auto } { fix N i n x assume "i \ N" "n \ N" "x \ B i n" - then have 1: "\m\N. x \ (\ n\N. B m n)" by auto + then have 1: "\m\N. x \ (\n\N. B m n)" by auto from m[OF this] obtain n where n: "m N x \ N" "n \ N" "x \ B (m N x) n" by auto moreover def L \ "LEAST n. x \ B (m N x) n" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Caratheodory.thy --- a/src/HOL/Probability/Caratheodory.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Caratheodory.thy Fri Jun 26 10:20:33 2015 +0200 @@ -804,7 +804,7 @@ with Ca Cb have "Ca \ Cb \ {{}}" by auto then have C_Int_cases: "Ca \ Cb = {{}} \ Ca \ Cb = {}" by auto - from `a \ b = {}` have "\' (\ (Ca \ Cb)) = (\c\Ca \ Cb. \ c)" + from `a \ b = {}` have "\' (\(Ca \ Cb)) = (\c\Ca \ Cb. \ c)" using Ca Cb by (intro \') (auto intro!: disjoint_union) also have "\ = (\c\Ca \ Cb. \ c) + (\c\Ca \ Cb. \ c)" using C_Int_cases volume_empty[OF `volume M \`] by (elim disjE) simp_all @@ -915,7 +915,7 @@ then have "disjoint_family f" by (auto simp: disjoint_family_on_def f_def) moreover - have Ai_eq: "A i = (\ xxrange f = A i" using f C Ai unfolding bij_betw_def by (auto simp: f_def) diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Measure_Space.thy --- a/src/HOL/Probability/Measure_Space.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Measure_Space.thy Fri Jun 26 10:20:33 2015 +0200 @@ -172,17 +172,17 @@ case empty thus ?case using f by (auto simp: positive_def) next case (insert x F) - hence in_M: "A x \ M" "(\ i\F. A i) \ M" "(\ i\F. A i) - A x \ M" using A by force+ - have subs: "(\ i\F. A i) - A x \ (\ i\F. A i)" by auto - have "(\ i\(insert x F). A i) = A x \ ((\ i\F. A i) - A x)" by auto - hence "f (\ i\(insert x F). A i) = f (A x \ ((\ i\F. A i) - A x))" + hence in_M: "A x \ M" "(\i\F. A i) \ M" "(\i\F. A i) - A x \ M" using A by force+ + have subs: "(\i\F. A i) - A x \ (\i\F. A i)" by auto + have "(\i\(insert x F). A i) = A x \ ((\i\F. A i) - A x)" by auto + hence "f (\i\(insert x F). A i) = f (A x \ ((\i\F. A i) - A x))" by simp - also have "\ = f (A x) + f ((\ i\F. A i) - A x)" + also have "\ = f (A x) + f ((\i\F. A i) - A x)" using f(2) by (rule additiveD) (insert in_M, auto) - also have "\ \ f (A x) + f (\ i\F. A i)" + also have "\ \ f (A x) + f (\i\F. A i)" using additive_increasing[OF f] in_M subs by (auto simp: increasing_def intro: add_left_mono) also have "\ \ f (A x) + (\i\F. f (A i))" using insert by (auto intro: add_left_mono) - finally show "f (\ i\(insert x F). A i) \ (\i\(insert x F). f (A i))" using insert by simp + finally show "f (\i\(insert x F). A i) \ (\i\(insert x F). f (A i))" using insert by simp qed lemma (in ring_of_sets) countably_additive_additive: @@ -292,7 +292,7 @@ have *: "(\n. (\ii. A i)" by auto have "(\n. f (\i f (\i. A i)" proof (unfold *[symmetric], intro cont[rule_format]) - show "range (\i. \ i M" "(\i. \ i M" + show "range (\i. \i M" "(\i. \i M" using A * by auto qed (force intro!: incseq_SucI) moreover have "\n. f (\iii::nat. emeasure M (N i) = 0" and "range N \ sets M" - shows "emeasure M (\ i. N i) = 0" + shows "emeasure M (\i. N i) = 0" proof - - have "0 \ emeasure M (\ i. N i)" using assms by auto - moreover have "emeasure M (\ i. N i) \ 0" + have "0 \ emeasure M (\i. N i)" using assms by auto + moreover have "emeasure M (\i. N i) \ 0" using emeasure_subadditive_countably[OF assms(2)] assms(1) by simp ultimately show ?thesis by simp qed @@ -1173,9 +1173,9 @@ from F have "\x. x \ space M \ \i. x \ F i" by auto with F show ?thesis by fastforce qed - show "emeasure M (\ i\n. F i) \ \" for n + show "emeasure M (\i\n. F i) \ \" for n proof - - have "emeasure M (\ i\n. F i) \ (\i\n. emeasure M (F i))" + have "emeasure M (\i\n. F i) \ (\i\n. emeasure M (F i))" using F by (auto intro!: emeasure_subadditive_finite) also have "\ < \" using F by (auto simp: setsum_Pinfty) @@ -1579,12 +1579,12 @@ assumes "range f \ sets M" "range g \ sets M" assumes "disjoint_family f" "disjoint_family g" assumes "\ n :: nat. measure M (f n) = measure M (g n)" - shows "measure M (\ i. f i) = measure M (\ i. g i)" + shows "measure M (\i. f i) = measure M (\i. g i)" using assms proof - - have a: "(\ i. measure M (f i)) sums (measure M (\ i. f i))" + have a: "(\ i. measure M (f i)) sums (measure M (\i. f i))" by (rule finite_measure_UNION[OF assms(1,3)]) - have b: "(\ i. measure M (g i)) sums (measure M (\ i. g i))" + have b: "(\ i. measure M (g i)) sums (measure M (\i. g i))" by (rule finite_measure_UNION[OF assms(2,4)]) show ?thesis using sums_unique[OF b] sums_unique[OF a] assms by simp qed @@ -1592,9 +1592,9 @@ lemma (in finite_measure) measure_countably_zero: assumes "range c \ sets M" assumes "\ i. measure M (c i) = 0" - shows "measure M (\ i :: nat. c i) = 0" + shows "measure M (\i :: nat. c i) = 0" proof (rule antisym) - show "measure M (\ i :: nat. c i) \ 0" + show "measure M (\i :: nat. c i) \ 0" using finite_measure_subadditive_countably[OF assms(1)] by (simp add: assms(2)) qed (simp add: measure_nonneg) @@ -1633,12 +1633,12 @@ assumes "\ x. x \ s \ e \ f x \ sets M" assumes "finite s" assumes disjoint: "\ x y. \x \ s ; y \ s ; x \ y\ \ f x \ f y = {}" - assumes upper: "space M \ (\ i \ s. f i)" + assumes upper: "space M \ (\i \ s. f i)" shows "measure M e = (\ x \ s. measure M (e \ f x))" proof - - have e: "e = (\ i \ s. e \ f i)" + have e: "e = (\i \ s. e \ f i)" using `e \ sets M` sets.sets_into_space upper by blast - hence "measure M e = measure M (\ i \ s. e \ f i)" by simp + hence "measure M e = measure M (\i \ s. e \ f i)" by simp also have "\ = (\ x \ s. measure M (e \ f x))" proof (rule finite_measure_finite_Union) show "finite s" by fact diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Projective_Limit.thy --- a/src/HOL/Probability/Projective_Limit.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Projective_Limit.thy Fri Jun 26 10:20:33 2015 +0200 @@ -282,15 +282,15 @@ have Y_notempty: "\n. n \ 1 \ (Y n) \ {}" proof - fix n::nat assume "n \ 1" hence "Y n \ Z n" by fact - have "Y n = (\ i\{1..n}. emb I (J n) (emb (J n) (J i) (K i)))" using J J_mono + have "Y n = (\i\{1..n}. emb I (J n) (emb (J n) (J i) (K i)))" using J J_mono by (auto simp: Y_def Z'_def) - also have "\ = prod_emb I (\_. borel) (J n) (\ i\{1..n}. emb (J n) (J i) (K i))" + also have "\ = prod_emb I (\_. borel) (J n) (\i\{1..n}. emb (J n) (J i) (K i))" using `n \ 1` by (subst prod_emb_INT) auto finally have Y_emb: "Y n = prod_emb I (\_. borel) (J n) - (\ i\{1..n}. prod_emb (J n) (\_. borel) (J i) (K i))" . + (\i\{1..n}. prod_emb (J n) (\_. borel) (J i) (K i))" . hence "Y n \ ?G" using J J_mono K_sets `n \ 1` by (intro generatorI[OF _ _ _ _ Y_emb]) auto hence "\\G (Y n)\ \ \" unfolding Y_emb using J J_mono K_sets `n \ 1` by (subst mu_G_eq) (auto simp: limP_finite proj_sets mu_G_eq) @@ -317,11 +317,11 @@ (auto dest!: bspec[where x=n] simp: extensional_restrict emeasure_eq_measure prod_emb_iff simp del: limP_finite intro!: measure_Diff[symmetric] set_mp[OF K_B]) - also have subs: "Z n - Y n \ (\ i\{1..n}. (Z i - Z' i))" using Z' Z `n \ 1` + also have subs: "Z n - Y n \ (\i\{1..n}. (Z i - Z' i))" using Z' Z `n \ 1` unfolding Y_def by (force simp: decseq_def) - have "Z n - Y n \ ?G" "(\ i\{1..n}. (Z i - Z' i)) \ ?G" + have "Z n - Y n \ ?G" "(\i\{1..n}. (Z i - Z' i)) \ ?G" using `Z' _ \ ?G` `Z _ \ ?G` `Y _ \ ?G` by auto - hence "\G (Z n - Y n) \ \G (\ i\{1..n}. (Z i - Z' i))" + hence "\G (Z n - Y n) \ \G (\i\{1..n}. (Z i - Z' i))" using subs G.additive_increasing[OF positive_mu_G[OF `I \ {}`] additive_mu_G[OF `I \ {}`]] unfolding increasing_def by auto also have "\ \ (\ i\{1..n}. \G (Z i - Z' i))" using `Z _ \ ?G` `Z' _ \ ?G` diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Radon_Nikodym.thy --- a/src/HOL/Probability/Radon_Nikodym.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Radon_Nikodym.thy Fri Jun 26 10:20:33 2015 +0200 @@ -625,7 +625,7 @@ next case (Suc n) with `?O n \ ?Q` `?O (Suc n) \ ?Q` - emeasure_Diff[OF _ _ _ O_mono, of N n] emeasure_nonneg[of N "(\ x\n. Q' x)"] + emeasure_Diff[OF _ _ _ O_mono, of N n] emeasure_nonneg[of N "(\x\n. Q' x)"] show ?thesis by (auto simp: sets_eq ereal_minus_eq_PInfty_iff Q_def) qed } diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/ex/Dining_Cryptographers.thy --- a/src/HOL/Probability/ex/Dining_Cryptographers.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/ex/Dining_Cryptographers.thy Fri Jun 26 10:20:33 2015 +0200 @@ -289,12 +289,12 @@ have [simp]: "length xs = n" using assms by (auto simp: dc_crypto inversion_def [abs_def]) - have "{dc \ dc_crypto. inversion dc = xs} = (\ i < n. ?set i)" + have "{dc \ dc_crypto. inversion dc = xs} = (\i < n. ?set i)" unfolding dc_crypto payer_def by auto - also have "\ = (\ ?sets)" by auto - finally have eq_Union: "{dc \ dc_crypto. inversion dc = xs} = (\ ?sets)" by simp + also have "\ = (\?sets)" by auto + finally have eq_Union: "{dc \ dc_crypto. inversion dc = xs} = (\?sets)" by simp - have card_double: "2 * card ?sets = card (\ ?sets)" + have card_double: "2 * card ?sets = card (\?sets)" proof (rule card_partition) show "finite ?sets" by simp { fix i assume "i < n" diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Topological_Spaces.thy Fri Jun 26 10:20:33 2015 +0200 @@ -20,7 +20,7 @@ class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \ open T \ open (S \ T)" - assumes open_Union [intro]: "\S\K. open S \ open (\ K)" + assumes open_Union [intro]: "\S\K. open S \ open (\K)" begin definition @@ -66,7 +66,7 @@ lemma closed_INT [continuous_intros, intro]: "\x\A. closed (B x) \ closed (\x\A. B x)" unfolding closed_def by auto -lemma closed_Inter [continuous_intros, intro]: "\S\K. closed S \ closed (\ K)" +lemma closed_Inter [continuous_intros, intro]: "\S\K. closed S \ closed (\K)" unfolding closed_def uminus_Inf by auto lemma closed_Union [continuous_intros, intro]: "finite S \ \T\S. closed T \ closed (\S)" @@ -1067,12 +1067,12 @@ by (auto simp: decseq_def) show "\n. x \ (\i\n. A i)" "\n. open (\i\n. A i)" using A by auto - show "nhds x = (INF n. principal (\ i\n. A i))" + show "nhds x = (INF n. principal (\i\n. A i))" using A unfolding nhds_def apply (intro INF_eq) apply simp_all apply force - apply (intro exI[of _ "\ i\n. A i" for n] conjI open_INT) + apply (intro exI[of _ "\i\n. A i" for n] conjI open_INT) apply auto done qed @@ -1521,7 +1521,7 @@ "compact S \ (\C. (\c\C. open c) \ S \ \C \ (\D\C. finite D \ S \ \D))" lemma compactI: - assumes "\C. \t\C. open t \ s \ \ C \ \C'. C' \ C \ finite C' \ s \ \ C'" + assumes "\C. \t\C. open t \ s \ \C \ \C'. C' \ C \ finite C' \ s \ \C'" shows "compact s" unfolding compact_eq_heine_borel using assms by metis @@ -1584,8 +1584,8 @@ qed lemma compact_imp_fip: - "compact s \ \t \ f. closed t \ \f'. finite f' \ f' \ f \ (s \ (\ f') \ {}) \ - s \ (\ f) \ {}" + "compact s \ \t \ f. closed t \ \f'. finite f' \ f' \ f \ (s \ (\f') \ {}) \ + s \ (\f) \ {}" unfolding compact_fip by auto lemma compact_imp_fip_image: diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/ZF/Games.thy --- a/src/HOL/ZF/Games.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/ZF/Games.thy Fri Jun 26 10:20:33 2015 +0200 @@ -831,10 +831,10 @@ Pg_less_def: "G < H \ G \ H \ G \ (H::Pg)" definition - Pg_minus_def: "- G = the_elem (\ g \ Rep_Pg G. {Abs_Pg (eq_game_rel `` {neg_game g})})" + Pg_minus_def: "- G = the_elem (\g \ Rep_Pg G. {Abs_Pg (eq_game_rel `` {neg_game g})})" definition - Pg_plus_def: "G + H = the_elem (\ g \ Rep_Pg G. \ h \ Rep_Pg H. {Abs_Pg (eq_game_rel `` {plus_game g h})})" + Pg_plus_def: "G + H = the_elem (\g \ Rep_Pg G. \h \ Rep_Pg H. {Abs_Pg (eq_game_rel `` {plus_game g h})})" definition Pg_diff_def: "G - H = G + (- (H::Pg))"