# HG changeset patch # User huffman # Date 1158504158 -7200 # Node ID 49996715bc6e8bc416bf2a7e26550ae35ef95c3c # Parent 2116b7a371c7d52efc4ea7571196da175f510de6 norm_one is now proved from other class axioms diff -r 2116b7a371c7 -r 49996715bc6e src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Sun Sep 17 02:56:25 2006 +0200 +++ b/src/HOL/Complex/Complex.thy Sun Sep 17 16:42:38 2006 +0200 @@ -507,8 +507,6 @@ by (rule complex_mod_complex_of_real) show "cmod (x * y) = cmod x * cmod y" by (rule complex_mod_mult) - show "cmod 1 = 1" - by (rule complex_mod_one) qed lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a" diff -r 2116b7a371c7 -r 49996715bc6e src/HOL/Real/RealVector.thy --- a/src/HOL/Real/RealVector.thy Sun Sep 17 02:56:25 2006 +0200 +++ b/src/HOL/Real/RealVector.thy Sun Sep 17 16:42:38 2006 +0200 @@ -279,7 +279,6 @@ axclass real_normed_div_algebra < normed, real_algebra_1, division_ring norm_of_real: "norm (of_real r) = abs r" norm_mult: "norm (x * y) = norm x * norm y" - norm_one [simp]: "norm 1 = 1" instance real_normed_div_algebra < real_normed_algebra proof @@ -302,7 +301,6 @@ apply (rule abs_triangle_ineq) apply simp apply (rule abs_mult) -apply (rule abs_one) done lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" @@ -366,6 +364,13 @@ finally show ?thesis . qed +lemma norm_one [simp]: "norm (1::'a::real_normed_div_algebra) = 1" +proof - + have "norm (of_real 1 :: 'a) = abs 1" + by (rule norm_of_real) + thus ?thesis by simp +qed + lemma nonzero_norm_inverse: fixes a :: "'a::real_normed_div_algebra" shows "a \ 0 \ norm (inverse a) = inverse (norm a)"