# HG changeset patch # User huffman # Date 1318151633 -7200 # Node ID 49e305100097056b94d4383fc04b7cc42584f496 # Parent 5e495ccf6e56c7b82b9ebda15812d142c1e29092 Int.thy: discontinued some legacy theorems diff -r 5e495ccf6e56 -r 49e305100097 NEWS --- a/NEWS Sun Oct 09 08:30:48 2011 +0200 +++ b/NEWS Sun Oct 09 11:13:53 2011 +0200 @@ -4,6 +4,45 @@ New in this Isabelle version ---------------------------- +*** HOL *** + +* Theory Int: Discontinued many legacy theorems specific to type int. + INCOMPATIBILITY, use the corresponding generic theorems instead. + + zminus_zminus ~> minus_minus + zminus_0 ~> minus_zero + zminus_zadd_distrib ~> minus_add_distrib + zadd_commute ~> add_commute + zadd_assoc ~> add_assoc + zadd_left_commute ~> add_left_commute + zmult_ac ~> mult_ac + zadd_0 ~> add_0_left + zadd_0_right ~> add_0_right + zadd_zminus_inverse2 ~> left_minus + zmult_zminus ~> mult_minus_left + zmult_commute ~> mult_commute + zmult_assoc ~> mult_assoc + zadd_zmult_distrib ~> left_distrib + zadd_zmult_distrib2 ~> right_distrib + zdiff_zmult_distrib ~> left_diff_distrib + zdiff_zmult_distrib2 ~> right_diff_distrib + zmult_1 ~> mult_1_left + zmult_1_right ~> mult_1_right + zle_refl ~> order_refl + zle_trans ~> order_trans + zle_antisym ~> order_antisym + zle_linear ~> linorder_linear + zless_linear ~> linorder_less_linear + zadd_left_mono ~> add_left_mono + zadd_strict_right_mono ~> add_strict_right_mono + zadd_zless_mono ~> add_less_le_mono + int_0_less_1 ~> zero_less_one + int_0_neq_1 ~> zero_neq_one + zless_le ~> less_le + zpower_zadd_distrib ~> power_add + zero_less_zpower_abs_iff ~> zero_less_power_abs_iff + zero_le_zpower_abs ~> zero_le_power_abs + New in Isabelle2011-1 (October 2011) diff -r 5e495ccf6e56 -r 49e305100097 src/HOL/Int.thy --- a/src/HOL/Int.thy Sun Oct 09 08:30:48 2011 +0200 +++ b/src/HOL/Int.thy Sun Oct 09 11:13:53 2011 +0200 @@ -2431,40 +2431,8 @@ subsection {* Legacy theorems *} -lemmas zminus_zminus = minus_minus [of "z::int", standard] -lemmas zminus_0 = minus_zero [where 'a=int] -lemmas zminus_zadd_distrib = minus_add_distrib [of "z::int" "w", standard] -lemmas zadd_commute = add_commute [of "z::int" "w", standard] -lemmas zadd_assoc = add_assoc [of "z1::int" "z2" "z3", standard] -lemmas zadd_left_commute = add_left_commute [of "x::int" "y" "z", standard] -lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute -lemmas zmult_ac = mult_ac -lemmas zadd_0 = add_0_left [of "z::int", standard] -lemmas zadd_0_right = add_0_right [of "z::int", standard] -lemmas zadd_zminus_inverse2 = left_minus [of "z::int", standard] -lemmas zmult_zminus = mult_minus_left [of "z::int" "w", standard] -lemmas zmult_commute = mult_commute [of "z::int" "w", standard] -lemmas zmult_assoc = mult_assoc [of "z1::int" "z2" "z3", standard] -lemmas zadd_zmult_distrib = left_distrib [of "z1::int" "z2" "w", standard] -lemmas zadd_zmult_distrib2 = right_distrib [of "w::int" "z1" "z2", standard] -lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard] -lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard] - -lemmas zmult_1 = mult_1_left [of "z::int", standard] -lemmas zmult_1_right = mult_1_right [of "z::int", standard] - -lemmas zle_refl = order_refl [of "w::int", standard] -lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard] -lemmas zle_antisym = order_antisym [of "z::int" "w", standard] -lemmas zle_linear = linorder_linear [of "z::int" "w", standard] -lemmas zless_linear = linorder_less_linear [where 'a = int] - -lemmas zadd_left_mono = add_left_mono [of "i::int" "j" "k", standard] -lemmas zadd_strict_right_mono = add_strict_right_mono [of "i::int" "j" "k", standard] -lemmas zadd_zless_mono = add_less_le_mono [of "w'::int" "w" "z'" "z", standard] - -lemmas int_0_less_1 = zero_less_one [where 'a=int] -lemmas int_0_neq_1 = zero_neq_one [where 'a=int] +(* used by Tools/Qelim/cooper.ML *) +lemmas zadd_ac = add_ac [where 'a=int] lemmas inj_int = inj_of_nat [where 'a=int] lemmas zadd_int = of_nat_add [where 'a=int, symmetric] @@ -2482,19 +2450,6 @@ lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m", standard] lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] -lemmas zless_le = less_int_def -lemmas int_eq_of_nat = TrueI - -lemma zpower_zadd_distrib: - "x ^ (y + z) = ((x ^ y) * (x ^ z)::int)" - by (rule power_add) - -lemma zero_less_zpower_abs_iff: - "(0 < abs x ^ n) \ (x \ (0::int) | n = 0)" - by (rule zero_less_power_abs_iff) - -lemma zero_le_zpower_abs: "(0::int) \ abs x ^ n" - by (rule zero_le_power_abs) lemma zpower_zpower: "(x ^ y) ^ z = (x ^ (y * z)::int)"