# HG changeset patch # User wenzelm # Date 1355485207 -3600 # Node ID bd145273e7c67cab612c6d04c15e41392d87602f # Parent 0799339fea0f3cdf961a3c6f1bf3b48a68fec48b# Parent 4a389d115b4fa1eaf3c6ed39a5d38f531666d474 merged diff -r 4a389d115b4f -r bd145273e7c6 NEWS --- a/NEWS Fri Dec 14 12:18:51 2012 +0100 +++ b/NEWS Fri Dec 14 12:40:07 2012 +0100 @@ -172,8 +172,8 @@ syntax "xs >>= ys"; use "suffixeq ys xs" instead. Renamed lemmas accordingly. INCOMPATIBILITY. - - New constant "emb" for homeomorphic embedding on lists. New - abbreviation "sub" for special case "emb (op =)". + - New constant "list_hembeq" for homeomorphic embedding on lists. New + abbreviation "sublisteq" for special case "list_hembeq (op =)". - Library/Sublist does no longer provide "order" and "bot" type class instances for the prefix order (merely corresponding locale @@ -181,24 +181,24 @@ Library/Prefix_Order. INCOMPATIBILITY. - The sublist relation from Library/Sublist_Order is now based on - "Sublist.sub". Replaced lemmas: - - le_list_append_le_same_iff ~> Sublist.sub_append_le_same_iff - le_list_append_mono ~> Sublist.emb_append_mono - le_list_below_empty ~> Sublist.emb_Nil, Sublist.emb_Nil2 - le_list_Cons_EX ~> Sublist.emb_ConsD - le_list_drop_Cons2 ~> Sublist.sub_Cons2' - le_list_drop_Cons_neq ~> Sublist.sub_Cons2_neq - le_list_drop_Cons ~> Sublist.sub_Cons' - le_list_drop_many ~> Sublist.sub_drop_many - le_list_filter_left ~> Sublist.sub_filter_left - le_list_rev_drop_many ~> Sublist.sub_rev_drop_many - le_list_rev_take_iff ~> Sublist.sub_append - le_list_same_length ~> Sublist.sub_same_length - le_list_take_many_iff ~> Sublist.sub_append' + "Sublist.sublisteq". Replaced lemmas: + + le_list_append_le_same_iff ~> Sublist.sublisteq_append_le_same_iff + le_list_append_mono ~> Sublist.list_hembeq_append_mono + le_list_below_empty ~> Sublist.list_hembeq_Nil, Sublist.list_hembeq_Nil2 + le_list_Cons_EX ~> Sublist.list_hembeq_ConsD + le_list_drop_Cons2 ~> Sublist.sublisteq_Cons2' + le_list_drop_Cons_neq ~> Sublist.sublisteq_Cons2_neq + le_list_drop_Cons ~> Sublist.sublisteq_Cons' + le_list_drop_many ~> Sublist.sublisteq_drop_many + le_list_filter_left ~> Sublist.sublisteq_filter_left + le_list_rev_drop_many ~> Sublist.sublisteq_rev_drop_many + le_list_rev_take_iff ~> Sublist.sublisteq_append + le_list_same_length ~> Sublist.sublisteq_same_length + le_list_take_many_iff ~> Sublist.sublisteq_append' less_eq_list.drop ~> less_eq_list_drop less_eq_list.induct ~> less_eq_list_induct - not_le_list_length ~> Sublist.not_sub_length + not_le_list_length ~> Sublist.not_sublisteq_length INCOMPATIBILITY. diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/BNF/Examples/Koenig.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/BNF/Examples/Koenig.thy Fri Dec 14 12:40:07 2012 +0100 @@ -0,0 +1,147 @@ +(* Title: HOL/BNF/Examples/Stream.thy + Author: Dmitriy Traytel, TU Muenchen + Author: Andrei Popescu, TU Muenchen + Copyright 2012 + +Koenig's lemma. +*) + +header {* Koenig's lemma *} + +theory Koenig +imports TreeFI Stream +begin + +(* selectors for streams *) +lemma shd_def': "shd as = fst (stream_dtor as)" +unfolding shd_def stream_case_def fst_def by (rule refl) + +lemma stl_def': "stl as = snd (stream_dtor as)" +unfolding stl_def stream_case_def snd_def by (rule refl) + +lemma unfold_pair_fun_shd[simp]: "shd (stream_dtor_unfold (f \ g) t) = f t" +unfolding shd_def' pair_fun_def stream.dtor_unfold by simp + +lemma unfold_pair_fun_stl[simp]: "stl (stream_dtor_unfold (f \ g) t) = + stream_dtor_unfold (f \ g) (g t)" +unfolding stl_def' pair_fun_def stream.dtor_unfold by simp + +(* infinite trees: *) +coinductive infiniteTr where +"\tr' \ listF_set (sub tr); infiniteTr tr'\ \ infiniteTr tr" + +lemma infiniteTr_strong_coind[consumes 1, case_names sub]: +assumes *: "phi tr" and +**: "\ tr. phi tr \ \ tr' \ listF_set (sub tr). phi tr' \ infiniteTr tr'" +shows "infiniteTr tr" +using assms by (elim infiniteTr.coinduct) blast + +lemma infiniteTr_coind[consumes 1, case_names sub, induct pred: infiniteTr]: +assumes *: "phi tr" and +**: "\ tr. phi tr \ \ tr' \ listF_set (sub tr). phi tr'" +shows "infiniteTr tr" +using assms by (elim infiniteTr.coinduct) blast + +lemma infiniteTr_sub[simp]: +"infiniteTr tr \ (\ tr' \ listF_set (sub tr). infiniteTr tr')" +by (erule infiniteTr.cases) blast + +definition "konigPath \ stream_dtor_unfold + (lab \ (\tr. SOME tr'. tr' \ listF_set (sub tr) \ infiniteTr tr'))" + +lemma konigPath_simps[simp]: +"shd (konigPath t) = lab t" +"stl (konigPath t) = konigPath (SOME tr. tr \ listF_set (sub t) \ infiniteTr tr)" +unfolding konigPath_def by simp+ + +(* proper paths in trees: *) +coinductive properPath where +"\shd as = lab tr; tr' \ listF_set (sub tr); properPath (stl as) tr'\ \ + properPath as tr" + +lemma properPath_strong_coind[consumes 1, case_names shd_lab sub]: +assumes *: "phi as tr" and +**: "\ as tr. phi as tr \ shd as = lab tr" and +***: "\ as tr. + phi as tr \ + \ tr' \ listF_set (sub tr). phi (stl as) tr' \ properPath (stl as) tr'" +shows "properPath as tr" +using assms by (elim properPath.coinduct) blast + +lemma properPath_coind[consumes 1, case_names shd_lab sub, induct pred: properPath]: +assumes *: "phi as tr" and +**: "\ as tr. phi as tr \ shd as = lab tr" and +***: "\ as tr. + phi as tr \ + \ tr' \ listF_set (sub tr). phi (stl as) tr'" +shows "properPath as tr" +using properPath_strong_coind[of phi, OF * **] *** by blast + +lemma properPath_shd_lab: +"properPath as tr \ shd as = lab tr" +by (erule properPath.cases) blast + +lemma properPath_sub: +"properPath as tr \ + \ tr' \ listF_set (sub tr). phi (stl as) tr' \ properPath (stl as) tr'" +by (erule properPath.cases) blast + +(* prove the following by coinduction *) +theorem Konig: + assumes "infiniteTr tr" + shows "properPath (konigPath tr) tr" +proof- + {fix as + assume "infiniteTr tr \ as = konigPath tr" hence "properPath as tr" + proof (induct rule: properPath_coind, safe) + fix t + let ?t = "SOME t'. t' \ listF_set (sub t) \ infiniteTr t'" + assume "infiniteTr t" + hence "\t' \ listF_set (sub t). infiniteTr t'" by simp + hence "\t'. t' \ listF_set (sub t) \ infiniteTr t'" by blast + hence "?t \ listF_set (sub t) \ infiniteTr ?t" by (elim someI_ex) + moreover have "stl (konigPath t) = konigPath ?t" by simp + ultimately show "\t' \ listF_set (sub t). + infiniteTr t' \ stl (konigPath t) = konigPath t'" by blast + qed simp + } + thus ?thesis using assms by blast +qed + +(* some more stream theorems *) + +lemma stream_map[simp]: "stream_map f = stream_dtor_unfold (f o shd \ stl)" +unfolding stream_map_def pair_fun_def shd_def'[abs_def] stl_def'[abs_def] + map_pair_def o_def prod_case_beta by simp + +definition plus :: "nat stream \ nat stream \ nat stream" (infixr "\" 66) where + [simp]: "plus xs ys = + stream_dtor_unfold ((%(xs, ys). shd xs + shd ys) \ (%(xs, ys). (stl xs, stl ys))) (xs, ys)" + +definition scalar :: "nat \ nat stream \ nat stream" (infixr "\" 68) where + [simp]: "scalar n = stream_map (\x. n * x)" + +definition ones :: "nat stream" where [simp]: "ones = stream_dtor_unfold ((%x. 1) \ id) ()" +definition twos :: "nat stream" where [simp]: "twos = stream_dtor_unfold ((%x. 2) \ id) ()" +definition ns :: "nat \ nat stream" where [simp]: "ns n = scalar n ones" + +lemma "ones \ ones = twos" +by (rule stream.coinduct[of "%x1 x2. \x. x1 = ones \ ones \ x2 = twos"]) auto + +lemma "n \ twos = ns (2 * n)" +by (rule stream.coinduct[of "%x1 x2. \n. x1 = n \ twos \ x2 = ns (2 * n)"]) force+ + +lemma prod_scalar: "(n * m) \ xs = n \ m \ xs" +by (rule stream.coinduct[of "%x1 x2. \n m xs. x1 = (n * m) \ xs \ x2 = n \ m \ xs"]) force+ + +lemma scalar_plus: "n \ (xs \ ys) = n \ xs \ n \ ys" +by (rule stream.coinduct[of "%x1 x2. \n xs ys. x1 = n \ (xs \ ys) \ x2 = n \ xs \ n \ ys"]) + (force simp: add_mult_distrib2)+ + +lemma plus_comm: "xs \ ys = ys \ xs" +by (rule stream.coinduct[of "%x1 x2. \xs ys. x1 = xs \ ys \ x2 = ys \ xs"]) force+ + +lemma plus_assoc: "(xs \ ys) \ zs = xs \ ys \ zs" +by (rule stream.coinduct[of "%x1 x2. \xs ys zs. x1 = (xs \ ys) \ zs \ x2 = xs \ ys \ zs"]) force+ + +end diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/BNF/Examples/Stream.thy --- a/src/HOL/BNF/Examples/Stream.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/BNF/Examples/Stream.thy Fri Dec 14 12:40:07 2012 +0100 @@ -9,141 +9,184 @@ header {* Infinite Streams *} theory Stream -imports TreeFI +imports "../BNF" begin -codata 'a stream = Stream (hdd: 'a) (tll: "'a stream") - -(* selectors for streams *) -lemma hdd_def': "hdd as = fst (stream_dtor as)" -unfolding hdd_def stream_case_def fst_def by (rule refl) - -lemma tll_def': "tll as = snd (stream_dtor as)" -unfolding tll_def stream_case_def snd_def by (rule refl) +codata 'a stream = Stream (shd: 'a) (stl: "'a stream") -lemma unfold_pair_fun_hdd[simp]: "hdd (stream_dtor_unfold (f \ g) t) = f t" -unfolding hdd_def' pair_fun_def stream.dtor_unfold by simp +(* TODO: Provide by the package*) +theorem stream_set_induct: + "\\s. P (shd s) s; \s y. \y \ stream_set (stl s); P y (stl s)\ \ P y s\ \ + \y \ stream_set s. P y s" +by (rule stream.dtor_set_induct) + (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) -lemma unfold_pair_fun_tll[simp]: "tll (stream_dtor_unfold (f \ g) t) = - stream_dtor_unfold (f \ g) (g t)" -unfolding tll_def' pair_fun_def stream.dtor_unfold by simp +theorem shd_stream_set: "shd s \ stream_set s" +by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) + (metis UnCI fsts_def insertI1 stream.dtor_set) -(* infinite trees: *) -coinductive infiniteTr where -"\tr' \ listF_set (sub tr); infiniteTr tr'\ \ infiniteTr tr" +theorem stl_stream_set: "y \ stream_set (stl s) \ y \ stream_set s" +by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) + (metis insertI1 set_mp snds_def stream.dtor_set_set_incl) -lemma infiniteTr_strong_coind[consumes 1, case_names sub]: -assumes *: "phi tr" and -**: "\ tr. phi tr \ \ tr' \ listF_set (sub tr). phi tr' \ infiniteTr tr'" -shows "infiniteTr tr" -using assms by (elim infiniteTr.coinduct) blast +(* only for the non-mutual case: *) +theorem stream_set_induct1[consumes 1, case_names shd stl, induct set: "stream_set"]: + assumes "y \ stream_set s" and "\s. P (shd s) s" + and "\s y. \y \ stream_set (stl s); P y (stl s)\ \ P y s" + shows "P y s" +using assms stream_set_induct by blast +(* end TODO *) -lemma infiniteTr_coind[consumes 1, case_names sub, induct pred: infiniteTr]: -assumes *: "phi tr" and -**: "\ tr. phi tr \ \ tr' \ listF_set (sub tr). phi tr'" -shows "infiniteTr tr" -using assms by (elim infiniteTr.coinduct) blast + +subsection {* prepend list to stream *} -lemma infiniteTr_sub[simp]: -"infiniteTr tr \ (\ tr' \ listF_set (sub tr). infiniteTr tr')" -by (erule infiniteTr.cases) blast +primrec shift :: "'a list \ 'a stream \ 'a stream" (infixr "@-" 65) where + "shift [] s = s" +| "shift (x # xs) s = Stream x (shift xs s)" + +lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" +by (induct xs) auto -definition "konigPath \ stream_dtor_unfold - (lab \ (\tr. SOME tr'. tr' \ listF_set (sub tr) \ infiniteTr tr'))" +lemma shift_simps[simp]: + "shd (xs @- s) = (if xs = [] then shd s else hd xs)" + "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" +by (induct xs) auto -lemma konigPath_simps[simp]: -"hdd (konigPath t) = lab t" -"tll (konigPath t) = konigPath (SOME tr. tr \ listF_set (sub t) \ infiniteTr tr)" -unfolding konigPath_def by simp+ + +subsection {* recurring stream out of a list *} -(* proper paths in trees: *) -coinductive properPath where -"\hdd as = lab tr; tr' \ listF_set (sub tr); properPath (tll as) tr'\ \ - properPath as tr" +definition cycle :: "'a list \ 'a stream" where + "cycle = stream_unfold hd (\xs. tl xs @ [hd xs])" + +lemma cycle_simps[simp]: + "shd (cycle u) = hd u" + "stl (cycle u) = cycle (tl u @ [hd u])" +by (auto simp: cycle_def) -lemma properPath_strong_coind[consumes 1, case_names hdd_lab sub]: -assumes *: "phi as tr" and -**: "\ as tr. phi as tr \ hdd as = lab tr" and -***: "\ as tr. - phi as tr \ - \ tr' \ listF_set (sub tr). phi (tll as) tr' \ properPath (tll as) tr'" -shows "properPath as tr" -using assms by (elim properPath.coinduct) blast -lemma properPath_coind[consumes 1, case_names hdd_lab sub, induct pred: properPath]: -assumes *: "phi as tr" and -**: "\ as tr. phi as tr \ hdd as = lab tr" and -***: "\ as tr. - phi as tr \ - \ tr' \ listF_set (sub tr). phi (tll as) tr'" -shows "properPath as tr" -using properPath_strong_coind[of phi, OF * **] *** by blast +lemma cycle_decomp: "u \ [] \ cycle u = u @- cycle u" +proof (coinduct rule: stream.coinduct[of "\s1 s2. \u. s1 = cycle u \ s2 = u @- cycle u \ u \ []"]) + case (2 s1 s2) + then obtain u where "s1 = cycle u \ s2 = u @- cycle u \ u \ []" by blast + thus ?case using stream.unfold[of hd "\xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def) +qed auto -lemma properPath_hdd_lab: -"properPath as tr \ hdd as = lab tr" -by (erule properPath.cases) blast +lemma cycle_Cons: "cycle (x # xs) = Stream x (cycle (xs @ [x]))" +proof (coinduct rule: stream.coinduct[of "\s1 s2. \x xs. s1 = cycle (x # xs) \ s2 = Stream x (cycle (xs @ [x]))"]) + case (2 s1 s2) + then obtain x xs where "s1 = cycle (x # xs) \ s2 = Stream x (cycle (xs @ [x]))" by blast + thus ?case + by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold) +qed auto -lemma properPath_sub: -"properPath as tr \ - \ tr' \ listF_set (sub tr). phi (tll as) tr' \ properPath (tll as) tr'" -by (erule properPath.cases) blast +coinductive_set + streams :: "'a set => 'a stream set" + for A :: "'a set" +where + Stream[intro!, simp, no_atp]: "\a \ A; s \ streams A\ \ Stream a s \ streams A" -(* prove the following by coinduction *) -theorem Konig: - assumes "infiniteTr tr" - shows "properPath (konigPath tr) tr" -proof- - {fix as - assume "infiniteTr tr \ as = konigPath tr" hence "properPath as tr" - proof (induct rule: properPath_coind, safe) - fix t - let ?t = "SOME t'. t' \ listF_set (sub t) \ infiniteTr t'" - assume "infiniteTr t" - hence "\t' \ listF_set (sub t). infiniteTr t'" by simp - hence "\t'. t' \ listF_set (sub t) \ infiniteTr t'" by blast - hence "?t \ listF_set (sub t) \ infiniteTr ?t" by (elim someI_ex) - moreover have "tll (konigPath t) = konigPath ?t" by simp - ultimately show "\t' \ listF_set (sub t). - infiniteTr t' \ tll (konigPath t) = konigPath t'" by blast - qed simp - } - thus ?thesis using assms by blast +lemma shift_streams: "\w \ lists A; s \ streams A\ \ w @- s \ streams A" +by (induct w) auto + +lemma stream_set_streams: + assumes "stream_set s \ A" + shows "s \ streams A" +proof (coinduct rule: streams.coinduct[of "\s'. \a s. s' = Stream a s \ a \ A \ stream_set s \ A"]) + case streams from assms show ?case by (cases s) auto +next + fix s' assume "\a s. s' = Stream a s \ a \ A \ stream_set s \ A" + then guess a s by (elim exE) + with assms show "\a l. s' = Stream a l \ + a \ A \ ((\a s. l = Stream a s \ a \ A \ stream_set s \ A) \ l \ streams A)" + by (cases s) auto qed -(* some more stream theorems *) + +subsection {* flatten a stream of lists *} + +definition flat where + "flat \ stream_unfold (hd o shd) (\s. if tl (shd s) = [] then stl s else Stream (tl (shd s)) (stl s))" -lemma stream_map[simp]: "stream_map f = stream_dtor_unfold (f o hdd \ tll)" -unfolding stream_map_def pair_fun_def hdd_def'[abs_def] tll_def'[abs_def] - map_pair_def o_def prod_case_beta by simp +lemma flat_simps[simp]: + "shd (flat ws) = hd (shd ws)" + "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else Stream (tl (shd ws)) (stl ws))" +unfolding flat_def by auto + +lemma flat_Cons[simp]: "flat (Stream (x#xs) w) = Stream x (flat (if xs = [] then w else Stream xs w))" +unfolding flat_def using stream.unfold[of "hd o shd" _ "Stream (x#xs) w"] by auto + +lemma flat_Stream[simp]: "xs \ [] \ flat (Stream xs ws) = xs @- flat ws" +by (induct xs) auto + +lemma flat_unfold: "shd ws \ [] \ flat ws = shd ws @- flat (stl ws)" +by (cases ws) auto + -definition plus :: "nat stream \ nat stream \ nat stream" (infixr "\" 66) where - [simp]: "plus xs ys = - stream_dtor_unfold ((%(xs, ys). hdd xs + hdd ys) \ (%(xs, ys). (tll xs, tll ys))) (xs, ys)" +subsection {* take, drop, nth for streams *} + +primrec stake :: "nat \ 'a stream \ 'a list" where + "stake 0 s = []" +| "stake (Suc n) s = shd s # stake n (stl s)" + +primrec sdrop :: "nat \ 'a stream \ 'a stream" where + "sdrop 0 s = s" +| "sdrop (Suc n) s = sdrop n (stl s)" -definition scalar :: "nat \ nat stream \ nat stream" (infixr "\" 68) where - [simp]: "scalar n = stream_map (\x. n * x)" +primrec snth :: "nat \ 'a stream \ 'a" where + "snth 0 s = shd s" +| "snth (Suc n) s = snth n (stl s)" -definition ones :: "nat stream" where [simp]: "ones = stream_dtor_unfold ((%x. 1) \ id) ()" -definition twos :: "nat stream" where [simp]: "twos = stream_dtor_unfold ((%x. 2) \ id) ()" -definition ns :: "nat \ nat stream" where [simp]: "ns n = scalar n ones" +lemma stake_sdrop: "stake n s @- sdrop n s = s" +by (induct n arbitrary: s) auto + +lemma stake_empty: "stake n s = [] \ n = 0" +by (cases n) auto + +lemma sdrop_shift: "\s = w @- s'; length w = n\ \ sdrop n s = s'" +by (induct n arbitrary: w s) auto -lemma "ones \ ones = twos" -by (rule stream.coinduct[of "%x1 x2. \x. x1 = ones \ ones \ x2 = twos"]) auto +lemma stake_shift: "\s = w @- s'; length w = n\ \ stake n s = w" +by (induct n arbitrary: w s) auto + +lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" +by (induct m arbitrary: s) auto -lemma "n \ twos = ns (2 * n)" -by (rule stream.coinduct[of "%x1 x2. \n. x1 = n \ twos \ x2 = ns (2 * n)"]) force+ +lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" +by (induct m arbitrary: s) auto -lemma prod_scalar: "(n * m) \ xs = n \ m \ xs" -by (rule stream.coinduct[of "%x1 x2. \n m xs. x1 = (n * m) \ xs \ x2 = n \ m \ xs"]) force+ +lemma cycle_rotated: "\v \ []; cycle u = v @- s\ \ cycle (tl u @ [hd u]) = tl v @- s" +by (auto dest: arg_cong[of _ _ stl]) + +lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" +proof (induct n arbitrary: u) + case (Suc n) thus ?case by (cases u) auto +qed auto -lemma scalar_plus: "n \ (xs \ ys) = n \ xs \ n \ ys" -by (rule stream.coinduct[of "%x1 x2. \n xs ys. x1 = n \ (xs \ ys) \ x2 = n \ xs \ n \ ys"]) - (force simp: add_mult_distrib2)+ +lemma stake_cycle_le[simp]: + assumes "u \ []" "n < length u" + shows "stake n (cycle u) = take n u" +using min_absorb2[OF less_imp_le_nat[OF assms(2)]] +by (subst cycle_decomp[OF assms(1)], subst stake_append) auto + +lemma stake_cycle_eq[simp]: "u \ [] \ stake (length u) (cycle u) = u" +by (metis cycle_decomp stake_shift) + +lemma sdrop_cycle_eq[simp]: "u \ [] \ sdrop (length u) (cycle u) = cycle u" +by (metis cycle_decomp sdrop_shift) -lemma plus_comm: "xs \ ys = ys \ xs" -by (rule stream.coinduct[of "%x1 x2. \xs ys. x1 = xs \ ys \ x2 = ys \ xs"]) force+ +lemma stake_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ + stake n (cycle u) = concat (replicate (n div length u) u)" +by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric]) -lemma plus_assoc: "(xs \ ys) \ zs = xs \ ys \ zs" -by (rule stream.coinduct[of "%x1 x2. \xs ys zs. x1 = (xs \ ys) \ zs \ x2 = xs \ ys \ zs"]) force+ +lemma sdrop_cycle_eq_mod_0[simp]: "\u \ []; n mod length u = 0\ \ + sdrop n (cycle u) = cycle u" +by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric]) + +lemma stake_cycle: "u \ [] \ + stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" +by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto + +lemma sdrop_cycle: "u \ [] \ sdrop n (cycle u) = cycle (rotate (n mod length u) u)" +by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) end diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/BNF/Examples/TreeFI.thy --- a/src/HOL/BNF/Examples/TreeFI.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/BNF/Examples/TreeFI.thy Fri Dec 14 12:40:07 2012 +0100 @@ -12,8 +12,6 @@ imports ListF begin -hide_const (open) Sublist.sub - codata 'a treeFI = Tree (lab: 'a) (sub: "'a treeFI listF") lemma pre_treeFI_listF_set[simp]: "pre_treeFI_set2 (i, xs) = listF_set xs" diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/BNF/Examples/TreeFsetI.thy --- a/src/HOL/BNF/Examples/TreeFsetI.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/BNF/Examples/TreeFsetI.thy Fri Dec 14 12:40:07 2012 +0100 @@ -12,7 +12,6 @@ imports "../BNF" begin -hide_const (open) Sublist.sub hide_fact (open) Quotient_Product.prod_rel_def codata 'a treeFsetI = Tree (lab: 'a) (sub: "'a treeFsetI fset") diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Library/Sublist.thy --- a/src/HOL/Library/Sublist.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Library/Sublist.thy Fri Dec 14 12:40:07 2012 +0100 @@ -3,7 +3,7 @@ Author: Christian Sternagel, JAIST *) -header {* List prefixes, suffixes, and embedding*} +header {* List prefixes, suffixes, and homeomorphic embedding *} theory Sublist imports Main @@ -11,10 +11,10 @@ subsection {* Prefix order on lists *} -definition prefixeq :: "'a list => 'a list => bool" +definition prefixeq :: "'a list \ 'a list \ bool" where "prefixeq xs ys \ (\zs. ys = xs @ zs)" -definition prefix :: "'a list => 'a list => bool" +definition prefix :: "'a list \ 'a list \ bool" where "prefix xs ys \ prefixeq xs ys \ xs \ ys" interpretation prefix_order: order prefixeq prefix @@ -23,7 +23,7 @@ interpretation prefix_bot: bot prefixeq prefix Nil by default (simp add: prefixeq_def) -lemma prefixeqI [intro?]: "ys = xs @ zs ==> prefixeq xs ys" +lemma prefixeqI [intro?]: "ys = xs @ zs \ prefixeq xs ys" unfolding prefixeq_def by blast lemma prefixeqE [elim?]: @@ -31,7 +31,7 @@ obtains zs where "ys = xs @ zs" using assms unfolding prefixeq_def by blast -lemma prefixI' [intro?]: "ys = xs @ z # zs ==> prefix xs ys" +lemma prefixI' [intro?]: "ys = xs @ z # zs \ prefix xs ys" unfolding prefix_def prefixeq_def by blast lemma prefixE' [elim?]: @@ -43,7 +43,7 @@ with that show ?thesis by (auto simp add: neq_Nil_conv) qed -lemma prefixI [intro?]: "prefixeq xs ys ==> xs \ ys ==> prefix xs ys" +lemma prefixI [intro?]: "prefixeq xs ys \ xs \ ys \ prefix xs ys" unfolding prefix_def by blast lemma prefixE [elim?]: @@ -88,7 +88,7 @@ lemma same_prefixeq_nil [iff]: "prefixeq (xs @ ys) xs = (ys = [])" by (metis append_Nil2 append_self_conv prefix_order.eq_iff prefixeqI) -lemma prefixeq_prefixeq [simp]: "prefixeq xs ys ==> prefixeq xs (ys @ zs)" +lemma prefixeq_prefixeq [simp]: "prefixeq xs ys \ prefixeq xs (ys @ zs)" by (metis prefix_order.le_less_trans prefixeqI prefixE prefixI) lemma append_prefixeqD: "prefixeq (xs @ ys) zs \ prefixeq xs zs" @@ -106,12 +106,12 @@ done lemma append_one_prefixeq: - "prefixeq xs ys ==> length xs < length ys ==> prefixeq (xs @ [ys ! length xs]) ys" + "prefixeq xs ys \ length xs < length ys \ prefixeq (xs @ [ys ! length xs]) ys" unfolding prefixeq_def by (metis Cons_eq_appendI append_eq_appendI append_eq_conv_conj eq_Nil_appendI nth_drop') -theorem prefixeq_length_le: "prefixeq xs ys ==> length xs \ length ys" +theorem prefixeq_length_le: "prefixeq xs ys \ length xs \ length ys" by (auto simp add: prefixeq_def) lemma prefixeq_same_cases: @@ -191,10 +191,10 @@ subsection {* Parallel lists *} -definition parallel :: "'a list => 'a list => bool" (infixl "\" 50) +definition parallel :: "'a list \ 'a list \ bool" (infixl "\" 50) where "(xs \ ys) = (\ prefixeq xs ys \ \ prefixeq ys xs)" -lemma parallelI [intro]: "\ prefixeq xs ys ==> \ prefixeq ys xs ==> xs \ ys" +lemma parallelI [intro]: "\ prefixeq xs ys \ \ prefixeq ys xs \ xs \ ys" unfolding parallel_def by blast lemma parallelE [elim]: @@ -207,7 +207,7 @@ unfolding parallel_def prefix_def by blast theorem parallel_decomp: - "xs \ ys ==> \as b bs c cs. b \ c \ xs = as @ b # bs \ ys = as @ c # cs" + "xs \ ys \ \as b bs c cs. b \ c \ xs = as @ b # bs \ ys = as @ c # cs" proof (induct xs rule: rev_induct) case Nil then have False by auto @@ -268,7 +268,7 @@ "suffix xs ys \ suffixeq xs ys" by (auto simp: suffixeq_def suffix_def) -lemma suffixeqI [intro?]: "ys = zs @ xs ==> suffixeq xs ys" +lemma suffixeqI [intro?]: "ys = zs @ xs \ suffixeq xs ys" unfolding suffixeq_def by blast lemma suffixeqE [elim?]: @@ -420,268 +420,262 @@ unfolding suffix_def by auto -subsection {* Embedding on lists *} +subsection {* Homeomorphic embedding on lists *} -inductive emb :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" +inductive list_hembeq :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" for P :: "('a \ 'a \ bool)" where - emb_Nil [intro, simp]: "emb P [] ys" -| emb_Cons [intro] : "emb P xs ys \ emb P xs (y#ys)" -| emb_Cons2 [intro]: "P x y \ emb P xs ys \ emb P (x#xs) (y#ys)" + list_hembeq_Nil [intro, simp]: "list_hembeq P [] ys" +| list_hembeq_Cons [intro] : "list_hembeq P xs ys \ list_hembeq P xs (y#ys)" +| list_hembeq_Cons2 [intro]: "P\<^sup>=\<^sup>= x y \ list_hembeq P xs ys \ list_hembeq P (x#xs) (y#ys)" + +lemma list_hembeq_Nil2 [simp]: + assumes "list_hembeq P xs []" shows "xs = []" + using assms by (cases rule: list_hembeq.cases) auto -lemma emb_Nil2 [simp]: - assumes "emb P xs []" shows "xs = []" - using assms by (cases rule: emb.cases) auto +lemma list_hembeq_refl [simp, intro!]: + "list_hembeq P xs xs" + by (induct xs) auto -lemma emb_Cons_Nil [simp]: "emb P (x#xs) [] = False" +lemma list_hembeq_Cons_Nil [simp]: "list_hembeq P (x#xs) [] = False" proof - - { assume "emb P (x#xs) []" - from emb_Nil2 [OF this] have False by simp + { assume "list_hembeq P (x#xs) []" + from list_hembeq_Nil2 [OF this] have False by simp } moreover { assume False - then have "emb P (x#xs) []" by simp + then have "list_hembeq P (x#xs) []" by simp } ultimately show ?thesis by blast qed -lemma emb_append2 [intro]: "emb P xs ys \ emb P xs (zs @ ys)" +lemma list_hembeq_append2 [intro]: "list_hembeq P xs ys \ list_hembeq P xs (zs @ ys)" by (induct zs) auto -lemma emb_prefix [intro]: - assumes "emb P xs ys" shows "emb P xs (ys @ zs)" +lemma list_hembeq_prefix [intro]: + assumes "list_hembeq P xs ys" shows "list_hembeq P xs (ys @ zs)" using assms by (induct arbitrary: zs) auto -lemma emb_ConsD: - assumes "emb P (x#xs) ys" - shows "\us v vs. ys = us @ v # vs \ P x v \ emb P xs vs" +lemma list_hembeq_ConsD: + assumes "list_hembeq P (x#xs) ys" + shows "\us v vs. ys = us @ v # vs \ P\<^sup>=\<^sup>= x v \ list_hembeq P xs vs" using assms proof (induct x \ "x # xs" ys arbitrary: x xs) - case emb_Cons + case list_hembeq_Cons then show ?case by (metis append_Cons) next - case (emb_Cons2 x y xs ys) + case (list_hembeq_Cons2 x y xs ys) then show ?case by (cases xs) (auto, blast+) qed -lemma emb_appendD: - assumes "emb P (xs @ ys) zs" - shows "\us vs. zs = us @ vs \ emb P xs us \ emb P ys vs" +lemma list_hembeq_appendD: + assumes "list_hembeq P (xs @ ys) zs" + shows "\us vs. zs = us @ vs \ list_hembeq P xs us \ list_hembeq P ys vs" using assms proof (induction xs arbitrary: ys zs) case Nil then show ?case by auto next case (Cons x xs) then obtain us v vs where "zs = us @ v # vs" - and "P x v" and "emb P (xs @ ys) vs" by (auto dest: emb_ConsD) - with Cons show ?case by (metis append_Cons append_assoc emb_Cons2 emb_append2) + and "P\<^sup>=\<^sup>= x v" and "list_hembeq P (xs @ ys) vs" by (auto dest: list_hembeq_ConsD) + with Cons show ?case by (metis append_Cons append_assoc list_hembeq_Cons2 list_hembeq_append2) qed -lemma emb_suffix: - assumes "emb P xs ys" and "suffix ys zs" - shows "emb P xs zs" - using assms(2) and emb_append2 [OF assms(1)] by (auto simp: suffix_def) - -lemma emb_suffixeq: - assumes "emb P xs ys" and "suffixeq ys zs" - shows "emb P xs zs" - using assms and emb_suffix unfolding suffixeq_suffix_reflclp_conv by auto +lemma list_hembeq_suffix: + assumes "list_hembeq P xs ys" and "suffix ys zs" + shows "list_hembeq P xs zs" + using assms(2) and list_hembeq_append2 [OF assms(1)] by (auto simp: suffix_def) -lemma emb_length: "emb P xs ys \ length xs \ length ys" - by (induct rule: emb.induct) auto +lemma list_hembeq_suffixeq: + assumes "list_hembeq P xs ys" and "suffixeq ys zs" + shows "list_hembeq P xs zs" + using assms and list_hembeq_suffix unfolding suffixeq_suffix_reflclp_conv by auto -(*FIXME: move*) -definition transp_on :: "('a \ 'a \ bool) \ 'a set \ bool" - where "transp_on P A \ (\a\A. \b\A. \c\A. P a b \ P b c \ P a c)" -lemma transp_onI [Pure.intro]: - "(\a b c. \a \ A; b \ A; c \ A; P a b; P b c\ \ P a c) \ transp_on P A" - unfolding transp_on_def by blast +lemma list_hembeq_length: "list_hembeq P xs ys \ length xs \ length ys" + by (induct rule: list_hembeq.induct) auto -lemma transp_on_emb: - assumes "transp_on P A" - shows "transp_on (emb P) (lists A)" -proof +lemma list_hembeq_trans: + assumes "\x y z. \x \ A; y \ A; z \ A; P x y; P y z\ \ P x z" + shows "\xs ys zs. \xs \ lists A; ys \ lists A; zs \ lists A; + list_hembeq P xs ys; list_hembeq P ys zs\ \ list_hembeq P xs zs" +proof - fix xs ys zs - assume "emb P xs ys" and "emb P ys zs" + assume "list_hembeq P xs ys" and "list_hembeq P ys zs" and "xs \ lists A" and "ys \ lists A" and "zs \ lists A" - then show "emb P xs zs" + then show "list_hembeq P xs zs" proof (induction arbitrary: zs) - case emb_Nil show ?case by blast + case list_hembeq_Nil show ?case by blast next - case (emb_Cons xs ys y) - from emb_ConsD [OF `emb P (y#ys) zs`] obtain us v vs - where zs: "zs = us @ v # vs" and "P y v" and "emb P ys vs" by blast - then have "emb P ys (v#vs)" by blast - then have "emb P ys zs" unfolding zs by (rule emb_append2) - from emb_Cons.IH [OF this] and emb_Cons.prems show ?case by simp + case (list_hembeq_Cons xs ys y) + from list_hembeq_ConsD [OF `list_hembeq P (y#ys) zs`] obtain us v vs + where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_hembeq P ys vs" by blast + then have "list_hembeq P ys (v#vs)" by blast + then have "list_hembeq P ys zs" unfolding zs by (rule list_hembeq_append2) + from list_hembeq_Cons.IH [OF this] and list_hembeq_Cons.prems show ?case by simp next - case (emb_Cons2 x y xs ys) - from emb_ConsD [OF `emb P (y#ys) zs`] obtain us v vs - where zs: "zs = us @ v # vs" and "P y v" and "emb P ys vs" by blast - with emb_Cons2 have "emb P xs vs" by simp - moreover have "P x v" + case (list_hembeq_Cons2 x y xs ys) + from list_hembeq_ConsD [OF `list_hembeq P (y#ys) zs`] obtain us v vs + where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_hembeq P ys vs" by blast + with list_hembeq_Cons2 have "list_hembeq P xs vs" by simp + moreover have "P\<^sup>=\<^sup>= x v" proof - from zs and `zs \ lists A` have "v \ A" by auto - moreover have "x \ A" and "y \ A" using emb_Cons2 by simp_all - ultimately show ?thesis using `P x y` and `P y v` and assms - unfolding transp_on_def by blast + moreover have "x \ A" and "y \ A" using list_hembeq_Cons2 by simp_all + ultimately show ?thesis + using `P\<^sup>=\<^sup>= x y` and `P\<^sup>=\<^sup>= y v` and assms + by blast qed - ultimately have "emb P (x#xs) (v#vs)" by blast - then show ?case unfolding zs by (rule emb_append2) + ultimately have "list_hembeq P (x#xs) (v#vs)" by blast + then show ?case unfolding zs by (rule list_hembeq_append2) qed qed -subsection {* Sublists (special case of embedding) *} +subsection {* Sublists (special case of homeomorphic embedding) *} -abbreviation sub :: "'a list \ 'a list \ bool" - where "sub xs ys \ emb (op =) xs ys" +abbreviation sublisteq :: "'a list \ 'a list \ bool" + where "sublisteq xs ys \ list_hembeq (op =) xs ys" -lemma sub_Cons2: "sub xs ys \ sub (x#xs) (x#ys)" by auto +lemma sublisteq_Cons2: "sublisteq xs ys \ sublisteq (x#xs) (x#ys)" by auto -lemma sub_same_length: - assumes "sub xs ys" and "length xs = length ys" shows "xs = ys" - using assms by (induct) (auto dest: emb_length) +lemma sublisteq_same_length: + assumes "sublisteq xs ys" and "length xs = length ys" shows "xs = ys" + using assms by (induct) (auto dest: list_hembeq_length) -lemma not_sub_length [simp]: "length ys < length xs \ \ sub xs ys" - by (metis emb_length linorder_not_less) +lemma not_sublisteq_length [simp]: "length ys < length xs \ \ sublisteq xs ys" + by (metis list_hembeq_length linorder_not_less) lemma [code]: - "emb P [] ys \ True" - "emb P (x#xs) [] \ False" + "list_hembeq P [] ys \ True" + "list_hembeq P (x#xs) [] \ False" by (simp_all) -lemma sub_Cons': "sub (x#xs) ys \ sub xs ys" - by (induct xs) (auto dest: emb_ConsD) +lemma sublisteq_Cons': "sublisteq (x#xs) ys \ sublisteq xs ys" + by (induct xs) (auto dest: list_hembeq_ConsD) -lemma sub_Cons2': - assumes "sub (x#xs) (x#ys)" shows "sub xs ys" - using assms by (cases) (rule sub_Cons') +lemma sublisteq_Cons2': + assumes "sublisteq (x#xs) (x#ys)" shows "sublisteq xs ys" + using assms by (cases) (rule sublisteq_Cons') -lemma sub_Cons2_neq: - assumes "sub (x#xs) (y#ys)" - shows "x \ y \ sub (x#xs) ys" +lemma sublisteq_Cons2_neq: + assumes "sublisteq (x#xs) (y#ys)" + shows "x \ y \ sublisteq (x#xs) ys" using assms by (cases) auto -lemma sub_Cons2_iff [simp, code]: - "sub (x#xs) (y#ys) = (if x = y then sub xs ys else sub (x#xs) ys)" - by (metis emb_Cons emb_Cons2 [of "op =", OF refl] sub_Cons2' sub_Cons2_neq) +lemma sublisteq_Cons2_iff [simp, code]: + "sublisteq (x#xs) (y#ys) = (if x = y then sublisteq xs ys else sublisteq (x#xs) ys)" + by (metis list_hembeq_Cons sublisteq_Cons2 sublisteq_Cons2' sublisteq_Cons2_neq) -lemma sub_append': "sub (zs @ xs) (zs @ ys) \ sub xs ys" +lemma sublisteq_append': "sublisteq (zs @ xs) (zs @ ys) \ sublisteq xs ys" by (induct zs) simp_all -lemma sub_refl [simp, intro!]: "sub xs xs" by (induct xs) simp_all +lemma sublisteq_refl [simp, intro!]: "sublisteq xs xs" by (induct xs) simp_all -lemma sub_antisym: - assumes "sub xs ys" and "sub ys xs" +lemma sublisteq_antisym: + assumes "sublisteq xs ys" and "sublisteq ys xs" shows "xs = ys" using assms proof (induct) - case emb_Nil - from emb_Nil2 [OF this] show ?case by simp + case list_hembeq_Nil + from list_hembeq_Nil2 [OF this] show ?case by simp next - case emb_Cons2 + case list_hembeq_Cons2 then show ?case by simp next - case emb_Cons + case list_hembeq_Cons then show ?case - by (metis sub_Cons' emb_length Suc_length_conv Suc_n_not_le_n) + by (metis sublisteq_Cons' list_hembeq_length Suc_length_conv Suc_n_not_le_n) qed -lemma transp_on_sub: "transp_on sub UNIV" -proof - - have "transp_on (op =) UNIV" by (simp add: transp_on_def) - from transp_on_emb [OF this] show ?thesis by simp -qed +lemma sublisteq_trans: "sublisteq xs ys \ sublisteq ys zs \ sublisteq xs zs" + by (rule list_hembeq_trans [of UNIV "op ="]) auto -lemma sub_trans: "sub xs ys \ sub ys zs \ sub xs zs" - using transp_on_sub [unfolded transp_on_def] by blast +lemma sublisteq_append_le_same_iff: "sublisteq (xs @ ys) ys \ xs = []" + by (auto dest: list_hembeq_length) -lemma sub_append_le_same_iff: "sub (xs @ ys) ys \ xs = []" - by (auto dest: emb_length) - -lemma emb_append_mono: - "\ emb P xs xs'; emb P ys ys' \ \ emb P (xs@ys) (xs'@ys')" - apply (induct rule: emb.induct) - apply (metis eq_Nil_appendI emb_append2) - apply (metis append_Cons emb_Cons) - apply (metis append_Cons emb_Cons2) +lemma list_hembeq_append_mono: + "\ list_hembeq P xs xs'; list_hembeq P ys ys' \ \ list_hembeq P (xs@ys) (xs'@ys')" + apply (induct rule: list_hembeq.induct) + apply (metis eq_Nil_appendI list_hembeq_append2) + apply (metis append_Cons list_hembeq_Cons) + apply (metis append_Cons list_hembeq_Cons2) done subsection {* Appending elements *} -lemma sub_append [simp]: - "sub (xs @ zs) (ys @ zs) \ sub xs ys" (is "?l = ?r") +lemma sublisteq_append [simp]: + "sublisteq (xs @ zs) (ys @ zs) \ sublisteq xs ys" (is "?l = ?r") proof - { fix xs' ys' xs ys zs :: "'a list" assume "sub xs' ys'" - then have "xs' = xs @ zs & ys' = ys @ zs \ sub xs ys" + { fix xs' ys' xs ys zs :: "'a list" assume "sublisteq xs' ys'" + then have "xs' = xs @ zs & ys' = ys @ zs \ sublisteq xs ys" proof (induct arbitrary: xs ys zs) - case emb_Nil show ?case by simp + case list_hembeq_Nil show ?case by simp next - case (emb_Cons xs' ys' x) - { assume "ys=[]" then have ?case using emb_Cons(1) by auto } + case (list_hembeq_Cons xs' ys' x) + { assume "ys=[]" then have ?case using list_hembeq_Cons(1) by auto } moreover { fix us assume "ys = x#us" - then have ?case using emb_Cons(2) by(simp add: emb.emb_Cons) } + then have ?case using list_hembeq_Cons(2) by(simp add: list_hembeq.list_hembeq_Cons) } ultimately show ?case by (auto simp:Cons_eq_append_conv) next - case (emb_Cons2 x y xs' ys') - { assume "xs=[]" then have ?case using emb_Cons2(1) by auto } + case (list_hembeq_Cons2 x y xs' ys') + { assume "xs=[]" then have ?case using list_hembeq_Cons2(1) by auto } moreover - { fix us vs assume "xs=x#us" "ys=x#vs" then have ?case using emb_Cons2 by auto} + { fix us vs assume "xs=x#us" "ys=x#vs" then have ?case using list_hembeq_Cons2 by auto} moreover - { fix us assume "xs=x#us" "ys=[]" then have ?case using emb_Cons2(2) by bestsimp } - ultimately show ?case using `x = y` by (auto simp: Cons_eq_append_conv) + { fix us assume "xs=x#us" "ys=[]" then have ?case using list_hembeq_Cons2(2) by bestsimp } + ultimately show ?case using `op =\<^sup>=\<^sup>= x y` by (auto simp: Cons_eq_append_conv) qed } moreover assume ?l ultimately show ?r by blast next - assume ?r then show ?l by (metis emb_append_mono sub_refl) + assume ?r then show ?l by (metis list_hembeq_append_mono sublisteq_refl) qed -lemma sub_drop_many: "sub xs ys \ sub xs (zs @ ys)" +lemma sublisteq_drop_many: "sublisteq xs ys \ sublisteq xs (zs @ ys)" by (induct zs) auto -lemma sub_rev_drop_many: "sub xs ys \ sub xs (ys @ zs)" - by (metis append_Nil2 emb_Nil emb_append_mono) +lemma sublisteq_rev_drop_many: "sublisteq xs ys \ sublisteq xs (ys @ zs)" + by (metis append_Nil2 list_hembeq_Nil list_hembeq_append_mono) subsection {* Relation to standard list operations *} -lemma sub_map: - assumes "sub xs ys" shows "sub (map f xs) (map f ys)" +lemma sublisteq_map: + assumes "sublisteq xs ys" shows "sublisteq (map f xs) (map f ys)" using assms by (induct) auto -lemma sub_filter_left [simp]: "sub (filter P xs) xs" +lemma sublisteq_filter_left [simp]: "sublisteq (filter P xs) xs" by (induct xs) auto -lemma sub_filter [simp]: - assumes "sub xs ys" shows "sub (filter P xs) (filter P ys)" +lemma sublisteq_filter [simp]: + assumes "sublisteq xs ys" shows "sublisteq (filter P xs) (filter P ys)" using assms by (induct) auto -lemma "sub xs ys \ (\N. xs = sublist ys N)" (is "?L = ?R") +lemma "sublisteq xs ys \ (\N. xs = sublist ys N)" (is "?L = ?R") proof assume ?L then show ?R proof (induct) - case emb_Nil show ?case by (metis sublist_empty) + case list_hembeq_Nil show ?case by (metis sublist_empty) next - case (emb_Cons xs ys x) + case (list_hembeq_Cons xs ys x) then obtain N where "xs = sublist ys N" by blast then have "xs = sublist (x#ys) (Suc ` N)" by (clarsimp simp add:sublist_Cons inj_image_mem_iff) then show ?case by blast next - case (emb_Cons2 x y xs ys) + case (list_hembeq_Cons2 x y xs ys) then obtain N where "xs = sublist ys N" by blast then have "x#xs = sublist (x#ys) (insert 0 (Suc ` N))" by (clarsimp simp add:sublist_Cons inj_image_mem_iff) - then show ?case unfolding `x = y` by blast + moreover from list_hembeq_Cons2 have "x = y" by simp + ultimately show ?case by blast qed next assume ?R then obtain N where "xs = sublist ys N" .. - moreover have "sub (sublist ys N) ys" + moreover have "sublisteq (sublist ys N) ys" proof (induct ys arbitrary: N) case Nil show ?case by simp next diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Library/Sublist_Order.thy --- a/src/HOL/Library/Sublist_Order.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Library/Sublist_Order.thy Fri Dec 14 12:40:07 2012 +0100 @@ -21,7 +21,7 @@ begin definition - "(xs :: 'a list) \ ys \ sub xs ys" + "(xs :: 'a list) \ ys \ sublisteq xs ys" definition "(xs :: 'a list) < ys \ xs \ ys \ \ ys \ xs" @@ -40,41 +40,41 @@ next fix xs ys :: "'a list" assume "xs <= ys" and "ys <= xs" - thus "xs = ys" by (unfold less_eq_list_def) (rule sub_antisym) + thus "xs = ys" by (unfold less_eq_list_def) (rule sublisteq_antisym) next fix xs ys zs :: "'a list" assume "xs <= ys" and "ys <= zs" - thus "xs <= zs" by (unfold less_eq_list_def) (rule sub_trans) + thus "xs <= zs" by (unfold less_eq_list_def) (rule sublisteq_trans) qed lemmas less_eq_list_induct [consumes 1, case_names empty drop take] = - emb.induct [of "op =", folded less_eq_list_def] -lemmas less_eq_list_drop = emb.emb_Cons [of "op =", folded less_eq_list_def] -lemmas le_list_Cons2_iff [simp, code] = sub_Cons2_iff [folded less_eq_list_def] -lemmas le_list_map = sub_map [folded less_eq_list_def] -lemmas le_list_filter = sub_filter [folded less_eq_list_def] -lemmas le_list_length = emb_length [of "op =", folded less_eq_list_def] + list_hembeq.induct [of "op =", folded less_eq_list_def] +lemmas less_eq_list_drop = list_hembeq.list_hembeq_Cons [of "op =", folded less_eq_list_def] +lemmas le_list_Cons2_iff [simp, code] = sublisteq_Cons2_iff [folded less_eq_list_def] +lemmas le_list_map = sublisteq_map [folded less_eq_list_def] +lemmas le_list_filter = sublisteq_filter [folded less_eq_list_def] +lemmas le_list_length = list_hembeq_length [of "op =", folded less_eq_list_def] lemma less_list_length: "xs < ys \ length xs < length ys" - by (metis emb_length sub_same_length le_neq_implies_less less_list_def less_eq_list_def) + by (metis list_hembeq_length sublisteq_same_length le_neq_implies_less less_list_def less_eq_list_def) lemma less_list_empty [simp]: "[] < xs \ xs \ []" - by (metis less_eq_list_def emb_Nil order_less_le) + by (metis less_eq_list_def list_hembeq_Nil order_less_le) lemma less_list_below_empty [simp]: "xs < [] \ False" - by (metis emb_Nil less_eq_list_def less_list_def) + by (metis list_hembeq_Nil less_eq_list_def less_list_def) lemma less_list_drop: "xs < ys \ xs < x # ys" by (unfold less_le less_eq_list_def) (auto) lemma less_list_take_iff: "x # xs < x # ys \ xs < ys" - by (metis sub_Cons2_iff less_list_def less_eq_list_def) + by (metis sublisteq_Cons2_iff less_list_def less_eq_list_def) lemma less_list_drop_many: "xs < ys \ xs < zs @ ys" - by (metis sub_append_le_same_iff sub_drop_many order_less_le self_append_conv2 less_eq_list_def) + by (metis sublisteq_append_le_same_iff sublisteq_drop_many order_less_le self_append_conv2 less_eq_list_def) lemma less_list_take_many_iff: "zs @ xs < zs @ ys \ xs < ys" - by (metis less_list_def less_eq_list_def sub_append') + by (metis less_list_def less_eq_list_def sublisteq_append') lemma less_list_rev_take: "xs @ zs < ys @ zs \ xs < ys" by (unfold less_le less_eq_list_def) auto diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Fri Dec 14 12:40:07 2012 +0100 @@ -1217,10 +1217,10 @@ shows "reduced label n x = r" apply(rule le_antisym) apply(rule_tac[!] ccontr) unfolding not_le using reduced_labelling[of label n x] using assms by auto -lemma reduced_labelling_0: assumes "j\{1..n}" "label x j = 0" shows "reduced label n x \ j - 1" +lemma reduced_labelling_zero: assumes "j\{1..n}" "label x j = 0" shows "reduced label n x \ j - 1" using reduced_labelling[of label n x] using assms by fastforce -lemma reduced_labelling_1: assumes "j\{1..n}" "label x j \ 0" shows "reduced label n x < j" +lemma reduced_labelling_nonzero: assumes "j\{1..n}" "label x j \ 0" shows "reduced label n x < j" using assms and reduced_labelling[of label n x] apply(erule_tac x=j in allE) by auto lemma reduced_labelling_Suc: @@ -1235,13 +1235,13 @@ ((reduced lab (n + 1)) ` f = {0..n}) \ (\x\f. x (n + 1) = p)" (is "?l = ?r") proof assume ?l (is "?as \ (?a \ ?b)") thus ?r apply-apply(rule,erule conjE,assumption) proof(cases ?a) case True then guess j .. note j=this {fix x assume x:"x\f" - have "reduced lab (n+1) x \ j - 1" using j apply-apply(rule reduced_labelling_0) defer apply(rule assms(1)[rule_format]) using x by auto } + have "reduced lab (n+1) x \ j - 1" using j apply-apply(rule reduced_labelling_zero) defer apply(rule assms(1)[rule_format]) using x by auto } moreover have "j - 1 \ {0..n}" using j by auto then guess y unfolding `?l`[THEN conjunct1,THEN sym] and image_iff .. note y = this ultimately have False by auto thus "\x\f. x (n + 1) = p" by auto next case False hence ?b using `?l` by blast then guess j .. note j=this {fix x assume x:"x\f" - have "reduced lab (n+1) x < j" using j apply-apply(rule reduced_labelling_1) using assms(2)[rule_format,of x j] and x by auto } note * = this + have "reduced lab (n+1) x < j" using j apply-apply(rule reduced_labelling_nonzero) using assms(2)[rule_format,of x j] and x by auto } note * = this have "j = n + 1" proof(rule ccontr) case goal1 hence "j < n + 1" using j by auto moreover have "n \ {0..n}" by auto then guess y unfolding `?l`[THEN conjunct1,THEN sym] image_iff .. ultimately show False using *[of y] by auto qed @@ -1261,7 +1261,7 @@ have *:"\x\f. \j\{1..n + 1}. x j = 0 \ lab x j = 0" "\x\f. \j\{1..n + 1}. x j = p \ lab x j = 1" using assms(2-3) using as(1)[unfolded ksimplex_def] by auto have allp:"\x\f. x (n + 1) = p" using assms(2) using as(1)[unfolded ksimplex_def] by auto - { fix x assume "x\f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_1) + { fix x assume "x\f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_nonzero) defer using assms(3) using as(1)[unfolded ksimplex_def] by auto hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc) using reduced_labelling(1) by auto } hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[THEN sym] apply- apply(rule set_eqI) unfolding image_iff by auto @@ -1278,14 +1278,14 @@ using reduced_labelling(1) by auto } thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[THEN sym] apply-apply(rule set_eqI) unfolding image_iff by auto have *:"\x\f. x (n + 1) = p" proof(cases "\j\{1..n + 1}. \x\f. x j = 0") - case True then guess j .. hence "\x. x\f \ reduced lab (n + 1) x \ j - 1" apply-apply(rule reduced_labelling_0) apply assumption + case True then guess j .. hence "\x. x\f \ reduced lab (n + 1) x \ j - 1" apply-apply(rule reduced_labelling_zero) apply assumption apply(rule assms(2)[rule_format]) using sa(1)[unfolded ksimplex_def] unfolding sa by auto moreover have "j - 1 \ {0..n}" using `j\{1..n+1}` by auto ultimately have False unfolding sa(4)[THEN sym] unfolding image_iff by fastforce thus ?thesis by auto next case False hence "\j\{1..n + 1}. \x\f. x j = p" using sa(5) by fastforce then guess j .. note j=this thus ?thesis proof(cases "j = n+1") case False hence *:"j\{1..n}" using j by auto - hence "\x. x\f \ reduced lab n x < j" apply(rule reduced_labelling_1) proof- fix x assume "x\f" + hence "\x. x\f \ reduced lab n x < j" apply(rule reduced_labelling_nonzero) proof- fix x assume "x\f" hence "lab x j = 1" apply-apply(rule assms(3)[rule_format,OF j(1)]) using sa(1)[unfolded ksimplex_def] using j unfolding sa by auto thus "lab x j \ 0" by auto qed moreover have "j\{0..n}" using * by auto @@ -1306,7 +1306,7 @@ have "a = (\x. p)" using ksimplexD(5)[OF l, rule_format, OF a(1)] by(rule,auto) thus ?r using a by auto next assume r:?r show ?l unfolding r ksimplex_eq by auto qed -lemma reduce_labelling_0[simp]: "reduced lab 0 x = 0" apply(rule reduced_labelling_unique) by auto +lemma reduce_labelling_zero[simp]: "reduced lab 0 x = 0" apply(rule reduced_labelling_unique) by auto lemma kuhn_combinatorial: assumes "0 < p" "\x j. (\j. x(j) \ p) \ 1 \ j \ j \ n \ (x j = 0) \ (lab x j = 0)" diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/ROOT --- a/src/HOL/ROOT Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/ROOT Fri Dec 14 12:40:07 2012 +0100 @@ -633,7 +633,7 @@ TreeFsetI "Derivation_Trees/Gram_Lang" "Derivation_Trees/Parallel" - Stream + Koenig theories [condition = ISABELLE_FULL_TEST] Misc_Codata Misc_Data diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/TPTP/MaSh_Eval.thy --- a/src/HOL/TPTP/MaSh_Eval.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/TPTP/MaSh_Eval.thy Fri Dec 14 12:40:07 2012 +0100 @@ -11,7 +11,7 @@ ML_file "mash_eval.ML" sledgehammer_params - [provers = spass, max_relevant = 32, strict, dont_slice, type_enc = mono_native, + [provers = spass, max_facts = 32, strict, dont_slice, type_enc = mono_native, lam_trans = combs_and_lifting, timeout = 15, dont_preplay, minimize] declare [[sledgehammer_instantiate_inducts]] @@ -27,7 +27,9 @@ ML {* val do_it = false (* switch to "true" to generate the files *) val params = Sledgehammer_Isar.default_params @{context} [] -val prob_dir = "/tmp/mash_problems" +val dir = "List" +val prefix = "/tmp/" ^ dir ^ "/" +val prob_dir = prefix ^ "mash_problems" *} ML {* @@ -40,7 +42,7 @@ ML {* if do_it then evaluate_mash_suggestions @{context} params (SOME prob_dir) - "/tmp/mash_suggestions" "/tmp/mash_eval.out" + (prefix ^ "mash_suggestions") (prefix ^ "mash_eval") else () *} diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/TPTP/MaSh_Export.thy --- a/src/HOL/TPTP/MaSh_Export.thy Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/TPTP/MaSh_Export.thy Fri Dec 14 12:40:07 2012 +0100 @@ -11,12 +11,16 @@ ML_file "mash_export.ML" sledgehammer_params - [provers = spass, max_relevant = 32, strict, dont_slice, type_enc = mono_native, + [provers = spass, max_facts = 32, strict, dont_slice, type_enc = mono_native, lam_trans = combs_and_lifting, timeout = 2, dont_preplay, minimize] declare [[sledgehammer_instantiate_inducts]] ML {* +!Multithreading.max_threads +*} + +ML {* open MaSh_Export *} @@ -25,7 +29,7 @@ val thys = [@{theory List}] val params as {provers, ...} = Sledgehammer_Isar.default_params @{context} [] val prover = hd provers -val dir = space_implode "__" (map Context.theory_name thys) +val dir = "List" val prefix = "/tmp/" ^ dir ^ "/" *} diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/TPTP/atp_theory_export.ML --- a/src/HOL/TPTP/atp_theory_export.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/TPTP/atp_theory_export.ML Fri Dec 14 12:40:07 2012 +0100 @@ -34,8 +34,8 @@ fun inference infers ident = these (AList.lookup (op =) infers ident) |> inference_term fun add_inferences_to_problem_line infers - (Formula (ident, Axiom, phi, NONE, tms)) = - Formula (ident, Lemma, phi, inference infers ident, tms) + (Formula ((ident, alt), Axiom, phi, NONE, tms)) = + Formula ((ident, alt), Lemma, phi, inference infers ident, tms) | add_inferences_to_problem_line _ line = line fun add_inferences_to_problem infers = map (apsnd (map (add_inferences_to_problem_line infers))) @@ -44,7 +44,7 @@ | ident_of_problem_line (Type_Decl (ident, _, _)) = ident | ident_of_problem_line (Sym_Decl (ident, _, _)) = ident | ident_of_problem_line (Class_Memb (ident, _, _, _)) = ident - | ident_of_problem_line (Formula (ident, _, _, _, _)) = ident + | ident_of_problem_line (Formula ((ident, _), _, _, _, _)) = ident fun atp_for_format (THF (Polymorphic, _, _, _)) = dummy_thfN | atp_for_format (THF (Monomorphic, _, _, _)) = satallaxN @@ -83,11 +83,12 @@ [@{theory HOL}, @{theory Meson}, @{theory ATP}, @{theory Metis}] |> map (fact_name_of o Context.theory_name) -fun is_problem_line_tautology ctxt format (Formula (ident, _, phi, _, _)) = +fun is_problem_line_tautology ctxt format + (Formula ((ident, alt), _, phi, _, _)) = exists (fn prefix => String.isPrefix prefix ident) tautology_prefixes andalso is_none (run_some_atp ctxt format - [(factsN, [Formula (ident, Conjecture, phi, NONE, [])])]) + [(factsN, [Formula ((ident, alt), Conjecture, phi, NONE, [])])]) | is_problem_line_tautology _ _ _ = false fun order_facts ord = sort (ord o pairself ident_of_problem_line) diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/TPTP/mash_eval.ML --- a/src/HOL/TPTP/mash_eval.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/TPTP/mash_eval.ML Fri Dec 14 12:40:07 2012 +0100 @@ -97,11 +97,13 @@ | set_file_name _ NONE = I fun prove ok heading get facts = let + fun nickify ((_, stature), th) = ((K (nickname_of th), stature), th) val facts = - facts |> map get - |> Sledgehammer_Fact.maybe_instantiate_inducts ctxt hyp_ts - concl_t - |> take (the max_facts) + facts + |> map get + |> Sledgehammer_Fact.maybe_instantiate_inducts ctxt hyp_ts concl_t + |> take (the max_facts) + |> map nickify val ctxt = ctxt |> set_file_name heading prob_dir_name val res as {outcome, ...} = run_prover_for_mash ctxt params prover facts goal diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/TPTP/mash_export.ML --- a/src/HOL/TPTP/mash_export.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/TPTP/mash_export.ML Fri Dec 14 12:40:07 2012 +0100 @@ -97,18 +97,21 @@ in File.append path s end in List.app do_fact facts end -fun isar_or_prover_dependencies_of ctxt params_opt facts all_names th = +fun isar_or_prover_dependencies_of ctxt params_opt facts all_names th + isar_deps_opt = (case params_opt of SOME (params as {provers = prover :: _, ...}) => prover_dependencies_of ctxt params prover 0 facts all_names th |> snd - | NONE => isar_dependencies_of all_names th) + | NONE => + case isar_deps_opt of + SOME deps => deps + | NONE => isar_dependencies_of all_names th) |> these fun generate_isar_or_prover_dependencies ctxt params_opt thys include_thys file_name = let val path = file_name |> Path.explode - val _ = File.write path "" val facts = all_facts ctxt |> not include_thys ? filter_out (has_thys thys o snd) val all_names = build_all_names nickname_of facts @@ -116,10 +119,10 @@ let val name = nickname_of th val deps = - isar_or_prover_dependencies_of ctxt params_opt facts all_names th - val s = escape_meta name ^ ": " ^ escape_metas deps ^ "\n" - in File.append path s end - in List.app do_fact facts end + isar_or_prover_dependencies_of ctxt params_opt facts all_names th NONE + in escape_meta name ^ ": " ^ escape_metas deps ^ "\n" end + val lines = Par_List.map do_fact facts + in File.write_list path lines end fun generate_isar_dependencies ctxt = generate_isar_or_prover_dependencies ctxt NONE @@ -127,32 +130,39 @@ fun generate_prover_dependencies ctxt params = generate_isar_or_prover_dependencies ctxt (SOME params) +fun is_bad_query ctxt ho_atp th isar_deps = + Thm.legacy_get_kind th = "" orelse null isar_deps orelse + is_blacklisted_or_something ctxt ho_atp (Thm.get_name_hint th) + fun generate_isar_or_prover_commands ctxt prover params_opt thys file_name = let + val ho_atp = Sledgehammer_Provers.is_ho_atp ctxt prover val path = file_name |> Path.explode - val _ = File.write path "" val facts = all_facts ctxt val (new_facts, old_facts) = facts |> List.partition (has_thys thys o snd) val all_names = build_all_names nickname_of facts - fun do_fact ((_, stature), th) prevs = + fun do_fact ((name, ((_, stature), th)), prevs) = let - val name = nickname_of th val feats = features_of ctxt prover (theory_of_thm th) stature [prop_of th] + val isar_deps = isar_dependencies_of all_names th val deps = isar_or_prover_dependencies_of ctxt params_opt facts all_names th - val kind = Thm.legacy_get_kind th + (SOME isar_deps) val core = escape_meta name ^ ": " ^ escape_metas prevs ^ "; " ^ encode_features feats val query = - if kind = "" orelse null deps then "" else "? " ^ core ^ "\n" + if is_bad_query ctxt ho_atp th (these isar_deps) then "" + else "? " ^ core ^ "\n" val update = "! " ^ core ^ "; " ^ escape_metas deps ^ "\n" - val _ = File.append path (query ^ update) - in [name] end + in query ^ update end val thy_map = old_facts |> thy_map_from_facts val parents = fold (add_thy_parent_facts thy_map) thys [] - in fold do_fact new_facts parents; () end + val new_facts = new_facts |> map (`(nickname_of o snd)) + val prevss = fst (split_last (parents :: map (single o fst) new_facts)) + val lines = Par_List.map do_fact (new_facts ~~ prevss) + in File.write_list path lines end fun generate_isar_commands ctxt prover = generate_isar_or_prover_commands ctxt prover NONE @@ -160,33 +170,35 @@ fun generate_prover_commands ctxt (params as {provers = prover :: _, ...}) = generate_isar_or_prover_commands ctxt prover (SOME params) -fun generate_mepo_suggestions ctxt (params as {provers, ...}) thys max_relevant - file_name = +fun generate_mepo_suggestions ctxt (params as {provers = prover :: _, ...}) thys + max_facts file_name = let + val ho_atp = Sledgehammer_Provers.is_ho_atp ctxt prover val path = file_name |> Path.explode - val _ = File.write path "" - val prover = hd provers val facts = all_facts ctxt val (new_facts, old_facts) = facts |> List.partition (has_thys thys o snd) - fun do_fact (fact as (_, th)) old_facts = + val all_names = build_all_names nickname_of facts + fun do_fact ((_, th), old_facts) = let val name = nickname_of th val goal = goal_of_thm (Proof_Context.theory_of ctxt) th val (_, hyp_ts, concl_t) = ATP_Util.strip_subgoal ctxt goal 1 - val kind = Thm.legacy_get_kind th - val _ = - if kind <> "" then - let - val suggs = - old_facts - |> Sledgehammer_MePo.mepo_suggested_facts ctxt params prover - max_relevant NONE hyp_ts concl_t - |> map (nickname_of o snd) - val s = escape_meta name ^ ": " ^ escape_metas suggs ^ "\n" - in File.append path s end - else - () - in fact :: old_facts end - in fold do_fact new_facts old_facts; () end + val isar_deps = isar_dependencies_of all_names th + in + if is_bad_query ctxt ho_atp th (these isar_deps) then + "" + else + let + val suggs = + old_facts + |> Sledgehammer_MePo.mepo_suggested_facts ctxt params prover + max_facts NONE hyp_ts concl_t + |> map (nickname_of o snd) + in escape_meta name ^ ": " ^ escape_metas suggs ^ "\n" end + end + fun accum x (yss as ys :: _) = (x :: ys) :: yss + val old_factss = tl (fold accum new_facts [old_facts]) + val lines = Par_List.map do_fact (new_facts ~~ rev old_factss) + in File.write_list path lines end end; diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Tools/ATP/atp_problem.ML --- a/src/HOL/Tools/ATP/atp_problem.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Tools/ATP/atp_problem.ML Fri Dec 14 12:40:07 2012 +0100 @@ -51,7 +51,7 @@ Type_Decl of string * 'a * int | Sym_Decl of string * 'a * 'a ho_type | Class_Memb of string * ('a * 'a list) list * 'a ho_type * 'a | - Formula of string * formula_role + Formula of (string * string) * formula_role * ('a, 'a ho_type, ('a, 'a ho_type) ho_term, 'a) formula * (string, string ho_type) ho_term option * (string, string ho_type) ho_term list @@ -190,7 +190,7 @@ Type_Decl of string * 'a * int | Sym_Decl of string * 'a * 'a ho_type | Class_Memb of string * ('a * 'a list) list * 'a ho_type * 'a | - Formula of string * formula_role + Formula of (string * string) * formula_role * ('a, 'a ho_type, ('a, 'a ho_type) ho_term, 'a) formula * (string, string ho_type) ho_term option * (string, string ho_type) ho_term list @@ -479,15 +479,18 @@ fun nary_type_decl_type n = funpow n (curry AFun atype_of_types) atype_of_types +fun maybe_alt "" = "" + | maybe_alt s = " % " ^ s + fun tptp_string_for_line format (Type_Decl (ident, ty, ary)) = tptp_string_for_line format (Sym_Decl (ident, ty, nary_type_decl_type ary)) | tptp_string_for_line format (Sym_Decl (ident, sym, ty)) = tptp_string_for_format format ^ "(" ^ ident ^ ", type,\n " ^ sym ^ " : " ^ string_for_type format ty ^ ").\n" - | tptp_string_for_line format (Formula (ident, kind, phi, source, _)) = + | tptp_string_for_line format (Formula ((ident, alt), kind, phi, source, _)) = tptp_string_for_format format ^ "(" ^ ident ^ ", " ^ - tptp_string_for_role kind ^ ",\n (" ^ - tptp_string_for_formula format phi ^ ")" ^ + tptp_string_for_role kind ^ "," ^ maybe_alt alt ^ + "\n (" ^ tptp_string_for_formula format phi ^ ")" ^ (case source of SOME tm => ", " ^ tptp_string_for_term format tm | NONE => "") ^ ").\n" @@ -582,13 +585,14 @@ else "[" ^ commas (map str_for_bound_tvar xs) ^ "], ") ^ str_for_typ ty ^ ", " ^ cl ^ ")." fun subclass_of sub super = "subclass(" ^ sub ^ ", " ^ super ^ ")." - fun formula pred (Formula (ident, kind, phi, _, info)) = + fun formula pred (Formula ((ident, alt), kind, phi, _, info)) = if pred kind then let val rank = extract_isabelle_rank info in "formula(" ^ dfg_string_for_formula poly gen_simp info phi ^ ", " ^ ident ^ (if rank = default_rank then "" else ", " ^ string_of_int rank) ^ - ")." |> SOME + ")." ^ maybe_alt alt + |> SOME end else NONE @@ -725,13 +729,13 @@ clausify_formula true (AConn (AImplies, rev phis)) | clausify_formula _ _ = raise CLAUSIFY () -fun clausify_formula_line (Formula (ident, kind, phi, source, info)) = +fun clausify_formula_line (Formula ((ident, alt), kind, phi, source, info)) = let val (n, phis) = phi |> try (clausify_formula true) |> these |> `length in map2 (fn phi => fn j => - Formula (ident ^ replicate_string (j - 1) "x", kind, phi, source, - info)) + Formula ((ident ^ replicate_string (j - 1) "x", alt), kind, phi, + source, info)) phis (1 upto n) end | clausify_formula_line _ = [] diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Tools/ATP/atp_problem_generate.ML --- a/src/HOL/Tools/ATP/atp_problem_generate.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Tools/ATP/atp_problem_generate.ML Fri Dec 14 12:40:07 2012 +0100 @@ -2128,8 +2128,8 @@ the remote provers might care. *) fun line_for_fact ctxt prefix encode freshen pos mono type_enc rank (j, {name, stature = (_, status), role, iformula, atomic_types}) = - Formula (prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ - encode name, + Formula ((prefix ^ (if freshen then string_of_int j ^ "_" else "") ^ + encode name, name), role, iformula |> formula_from_iformula ctxt mono type_enc @@ -2139,7 +2139,7 @@ NONE, isabelle_info (string_of_status status) (rank j)) fun lines_for_subclass type_enc sub super = - Formula (subclass_prefix ^ ascii_of sub ^ "___" ^ ascii_of super, Axiom, + Formula ((subclass_prefix ^ ascii_of sub ^ "___" ^ ascii_of super, ""), Axiom, AConn (AImplies, [sub, super] |> map (fn s => class_atom type_enc (s, tvar_a))) |> bound_tvars type_enc false [tvar_a], @@ -2160,7 +2160,7 @@ prems, native_ho_type_from_typ type_enc false 0 T, `make_class cl) else - Formula (tcon_clause_prefix ^ name, Axiom, + Formula ((tcon_clause_prefix ^ name, ""), Axiom, mk_ahorn (maps (class_atoms type_enc) prems) (class_atom type_enc (cl, T)) |> bound_tvars type_enc true (snd (dest_Type T)), @@ -2168,7 +2168,7 @@ fun line_for_conjecture ctxt mono type_enc ({name, role, iformula, atomic_types, ...} : ifact) = - Formula (conjecture_prefix ^ name, role, + Formula ((conjecture_prefix ^ name, ""), role, iformula |> formula_from_iformula ctxt mono type_enc should_guard_var_in_formula (SOME false) @@ -2186,7 +2186,7 @@ native_ho_type_from_typ type_enc false 0 T, `make_class cl) else - Formula (tfree_clause_prefix ^ string_of_int j, Hypothesis, + Formula ((tfree_clause_prefix ^ string_of_int j, ""), Hypothesis, class_atom type_enc (cl, T), NONE, []) val membs = fold (union (op =)) (map #atomic_types facts) [] @@ -2347,8 +2347,7 @@ end fun line_for_guards_mono_type ctxt mono type_enc T = - Formula (guards_sym_formula_prefix ^ - ascii_of (mangled_type type_enc T), + Formula ((guards_sym_formula_prefix ^ ascii_of (mangled_type type_enc T), ""), Axiom, IConst (`make_bound_var "X", T, []) |> type_guard_iterm type_enc T @@ -2361,8 +2360,7 @@ fun line_for_tags_mono_type ctxt mono type_enc T = let val x_var = ATerm ((`make_bound_var "X", []), []) in - Formula (tags_sym_formula_prefix ^ - ascii_of (mangled_type type_enc T), + Formula ((tags_sym_formula_prefix ^ ascii_of (mangled_type type_enc T), ""), Axiom, eq_formula type_enc (atomic_types_of T) [] false (tag_with_type ctxt mono type_enc NONE T x_var) x_var, @@ -2419,8 +2417,9 @@ end | _ => replicate ary NONE in - Formula (guards_sym_formula_prefix ^ s ^ - (if n > 1 then "_" ^ string_of_int j else ""), role, + Formula ((guards_sym_formula_prefix ^ s ^ + (if n > 1 then "_" ^ string_of_int j else ""), ""), + role, IConst ((s, s'), T, T_args) |> fold (curry (IApp o swap)) bounds |> type_guard_iterm type_enc res_T @@ -2449,8 +2448,8 @@ val eq = maybe_negate oo eq_formula type_enc (atomic_types_of T) [] pred_sym val tag_with = tag_with_type ctxt mono type_enc NONE fun formula c = - [Formula (ident, role, eq (tag_with res_T c) c, NONE, isabelle_info - non_rec_defN helper_rank)] + [Formula ((ident, ""), role, eq (tag_with res_T c) c, NONE, + isabelle_info non_rec_defN helper_rank)] in if pred_sym orelse not (should_encode_type ctxt mono level res_T) then [] @@ -2549,8 +2548,9 @@ (ho_term_of tm1) (ho_term_of tm2) in ([tm1, tm2], - [Formula (uncurried_alias_eq_prefix ^ s2, role, eq |> maybe_negate, - NONE, isabelle_info non_rec_defN helper_rank)]) + [Formula ((uncurried_alias_eq_prefix ^ s2, ""), role, + eq |> maybe_negate, NONE, + isabelle_info non_rec_defN helper_rank)]) |> (if ary - 1 = base_ary orelse Symtab.defined sym_tab s1 then I else pair_append (do_alias (ary - 1))) end diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Tools/ATP/atp_proof.ML --- a/src/HOL/Tools/ATP/atp_proof.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Tools/ATP/atp_proof.ML Fri Dec 14 12:40:07 2012 +0100 @@ -364,7 +364,7 @@ | is_same_formula _ subst (AAtom tm1) (AAtom tm2) = is_same_term subst tm1 tm2 | is_same_formula _ _ _ _ = false -fun matching_formula_line_identifier phi (Formula (ident, _, phi', _, _)) = +fun matching_formula_line_identifier phi (Formula ((ident, _), _, phi', _, _)) = if is_same_formula true [] phi phi' then SOME (ident, phi') else NONE | matching_formula_line_identifier _ _ = NONE diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Tools/Metis/metis_generate.ML --- a/src/HOL/Tools/Metis/metis_generate.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Tools/Metis/metis_generate.ML Fri Dec 14 12:40:07 2012 +0100 @@ -161,7 +161,7 @@ fun metis_literals_from_atp type_enc (AConn (AOr, phis)) = maps (metis_literals_from_atp type_enc) phis | metis_literals_from_atp type_enc phi = [metis_literal_from_atp type_enc phi] -fun metis_axiom_from_atp type_enc clauses (Formula (ident, _, phi, _, _)) = +fun metis_axiom_from_atp type_enc clauses (Formula ((ident, _), _, phi, _, _)) = let fun some isa = SOME (phi |> metis_literals_from_atp type_enc diff -r 4a389d115b4f -r bd145273e7c6 src/HOL/Tools/Sledgehammer/sledgehammer_fact.ML --- a/src/HOL/Tools/Sledgehammer/sledgehammer_fact.ML Fri Dec 14 12:18:51 2012 +0100 +++ b/src/HOL/Tools/Sledgehammer/sledgehammer_fact.ML Fri Dec 14 12:40:07 2012 +0100 @@ -24,6 +24,7 @@ Proof.context -> unit Symtab.table -> thm list -> status Termtab.table -> Facts.ref * Attrib.src list -> ((string * stature) * thm) list val backquote_thm : Proof.context -> thm -> string + val is_blacklisted_or_something : Proof.context -> bool -> string -> bool val clasimpset_rule_table_of : Proof.context -> status Termtab.table val build_all_names : (thm -> string) -> ('a * thm) list -> string Symtab.table @@ -173,15 +174,15 @@ else term_has_too_many_lambdas max_lambda_nesting t -(* The max apply depth of any "metis" call in "Metis_Examples" (on 2007-10-31) - was 11. *) +(* The maximum apply depth of any "metis" call in "Metis_Examples" (on + 2007-10-31) was 11. *) val max_apply_depth = 18 fun apply_depth (f $ t) = Int.max (apply_depth f, apply_depth t + 1) | apply_depth (Abs (_, _, t)) = apply_depth t | apply_depth _ = 0 -fun is_formula_too_complex ho_atp t = +fun is_too_complex ho_atp t = apply_depth t > max_apply_depth orelse (not ho_atp andalso formula_has_too_many_lambdas [] t) @@ -208,7 +209,7 @@ andalso exists_subterm (fn Free (s, _) => s = Name.skolem Auto_Bind.thesisN | _ => false) (prop_of th) -fun is_likely_tautology_or_too_meta th = +fun is_likely_tautology_too_meta_or_too_technical th = let fun is_interesting_subterm (Const (s, _)) = not (member (op =) atp_widely_irrelevant_consts s) @@ -227,18 +228,18 @@ | is_boring_prop _ (Const (@{const_name "=="}, _) $ t $ u) = is_boring_bool t andalso is_boring_bool u | is_boring_prop _ _ = true + val t = prop_of th in - is_boring_prop [] (prop_of th) andalso - not (Thm.eq_thm_prop (@{thm ext}, th)) - end - -fun is_theorem_bad_for_atps ho_atp th = - let val t = prop_of th in - is_formula_too_complex ho_atp t orelse + (is_boring_prop [] (prop_of th) andalso + not (Thm.eq_thm_prop (@{thm ext}, th))) orelse exists_type type_has_top_sort t orelse exists_technical_const t orelse exists_low_level_class_const t orelse is_that_fact th end +fun is_blacklisted_or_something ctxt ho_atp name = + (not (Config.get ctxt ignore_no_atp) andalso is_package_def name) orelse + exists (fn s => String.isSuffix s name) (multi_base_blacklist ctxt ho_atp) + fun hackish_string_for_term ctxt = with_vanilla_print_mode (Syntax.string_of_term ctxt) #> simplify_spaces @@ -402,7 +403,7 @@ fun maybe_filter_no_atps ctxt = not (Config.get ctxt ignore_no_atp) ? filter_out (No_ATPs.member ctxt o snd) -fun all_facts ctxt really_all ho_atp reserved add_ths chained css = +fun all_facts ctxt generous ho_atp reserved add_ths chained css = let val thy = Proof_Context.theory_of ctxt val global_facts = Global_Theory.facts_of thy @@ -419,15 +420,12 @@ Name_Space.merge (Facts.space_of global_facts, Facts.space_of local_facts) fun add_facts global foldx facts = foldx (fn (name0, ths) => - if not really_all andalso - name0 <> "" andalso + if name0 <> "" andalso forall (not o member Thm.eq_thm_prop add_ths) ths andalso (Facts.is_concealed facts name0 orelse not (can (Proof_Context.get_thms ctxt) name0) orelse - (not (Config.get ctxt ignore_no_atp) andalso - is_package_def name0) orelse - exists (fn s => String.isSuffix s name0) - (multi_base_blacklist ctxt ho_atp)) then + (not generous andalso + is_blacklisted_or_something ctxt ho_atp name0)) then I else let @@ -442,9 +440,9 @@ #> fold_rev (fn th => fn (j, (multis, unis)) => (j - 1, if not (member Thm.eq_thm_prop add_ths th) andalso - is_likely_tautology_or_too_meta th orelse - (not really_all andalso - is_theorem_bad_for_atps ho_atp th) then + (is_likely_tautology_too_meta_or_too_technical th orelse + (not generous andalso + is_too_complex ho_atp (prop_of th))) then (multis, unis) else let