# HG changeset patch # User wenzelm # Date 930954360 -7200 # Node ID 4a905b4a39c8cb58d8e244550f19fef8c4ff7626 # Parent 7bb02d03035d735e2aceb9e7397c368a0589d61a tuned; diff -r 7bb02d03035d -r 4a905b4a39c8 src/HOL/Isar_examples/BasicLogic.thy --- a/src/HOL/Isar_examples/BasicLogic.thy Sat Jul 03 00:23:17 1999 +0200 +++ b/src/HOL/Isar_examples/BasicLogic.thy Sat Jul 03 00:26:00 1999 +0200 @@ -70,10 +70,10 @@ lemma "A & B --> B & A"; proof; - assume AB: "A & B"; - from AB; have A: A; ..; - from AB; have B: B; ..; - from B A; show "B & A"; ..; + assume ab: "A & B"; + from ab; have a: A; ..; + from ab; have b: B; ..; + from b a; show "B & A"; ..; qed; diff -r 7bb02d03035d -r 4a905b4a39c8 src/HOL/Isar_examples/Group.thy --- a/src/HOL/Isar_examples/Group.thy Sat Jul 03 00:23:17 1999 +0200 +++ b/src/HOL/Isar_examples/Group.thy Sat Jul 03 00:26:00 1999 +0200 @@ -95,19 +95,19 @@ have "... = x * inv x * x"; by (simp add: group_assoc); - note calculation = trans[OF calculation facts] + note calculation = trans [OF calculation facts] -- {* general calculational step: compose with transitivity rule *}; have "... = one * x"; by (simp add: group_right_inverse); - note calculation = trans[OF calculation facts] + note calculation = trans [OF calculation facts] -- {* general calculational step: compose with transitivity rule *}; have "... = x"; by (simp add: group_left_unit); - note calculation = trans[OF calculation facts] + note calculation = trans [OF calculation facts] -- {* final calculational step: compose with transitivity rule ... *}; from calculation -- {* ... and pick up final result *}; diff -r 7bb02d03035d -r 4a905b4a39c8 src/HOL/Isar_examples/Peirce.thy --- a/src/HOL/Isar_examples/Peirce.thy Sat Jul 03 00:23:17 1999 +0200 +++ b/src/HOL/Isar_examples/Peirce.thy Sat Jul 03 00:26:00 1999 +0200 @@ -9,35 +9,35 @@ theorem "((A --> B) --> A) --> A"; proof; - assume ABA: "(A --> B) --> A"; + assume aba: "(A --> B) --> A"; show A; proof (rule classical); - assume notA: "~ A"; + assume not_a: "~ A"; - have AB: "A --> B"; + have ab: "A --> B"; proof; - assume A: A; - from notA A; show B; ..; + assume a: A; + from not_a a; show B; ..; qed; - from ABA AB; show A; ..; + from aba ab; show A; ..; qed; qed; theorem "((A --> B) --> A) --> A"; proof; - assume ABA: "(A --> B) --> A"; + assume aba: "(A --> B) --> A"; show A; proof (rule classical); - presume AB: "A --> B"; - from ABA AB; show A; ..; + presume ab: "A --> B"; + from aba ab; show A; ..; next; - assume notA: "~ A"; + assume not_a: "~ A"; show "A --> B"; proof; - assume A: A; - from notA A; show B; ..; + assume a: A; + from not_a a; show B; ..; qed; qed; qed;