# HG changeset patch # User chaieb # Date 1216640225 -7200 # Node ID 4b1642284dd74b35d55e7af9e311efd527aeb590 # Parent 6eb20b2cecf8448484d333f63cf6a92b206361ce Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy diff -r 6eb20b2cecf8 -r 4b1642284dd7 src/HOL/Library/GCD.thy --- a/src/HOL/Library/GCD.thy Mon Jul 21 13:36:59 2008 +0200 +++ b/src/HOL/Library/GCD.thy Mon Jul 21 13:37:05 2008 +0200 @@ -52,16 +52,16 @@ case (1 m n) with assms show ?case by (cases "n = 0") simp_all qed -lemma gcd_0 [simp]: "gcd m 0 = m" +lemma gcd_0 [simp, algebra]: "gcd m 0 = m" by simp -lemma gcd_0_left [simp]: "gcd 0 m = m" +lemma gcd_0_left [simp,algebra]: "gcd 0 m = m" by simp lemma gcd_non_0: "n > 0 \ gcd m n = gcd n (m mod n)" by simp -lemma gcd_1 [simp]: "gcd m (Suc 0) = 1" +lemma gcd_1 [simp, algebra]: "gcd m (Suc 0) = 1" by simp declare gcd.simps [simp del] @@ -71,8 +71,8 @@ conjunctions don't seem provable separately. *} -lemma gcd_dvd1 [iff]: "gcd m n dvd m" - and gcd_dvd2 [iff]: "gcd m n dvd n" +lemma gcd_dvd1 [iff, algebra]: "gcd m n dvd m" + and gcd_dvd2 [iff, algebra]: "gcd m n dvd n" apply (induct m n rule: gcd_induct) apply (simp_all add: gcd_non_0) apply (blast dest: dvd_mod_imp_dvd) @@ -97,10 +97,10 @@ subsection {* Derived laws for GCD *} -lemma gcd_greatest_iff [iff]: "k dvd gcd m n \ k dvd m \ k dvd n" +lemma gcd_greatest_iff [iff, algebra]: "k dvd gcd m n \ k dvd m \ k dvd n" by (blast intro!: gcd_greatest intro: dvd_trans) -lemma gcd_zero: "gcd m n = 0 \ m = 0 \ n = 0" +lemma gcd_zero[algebra]: "gcd m n = 0 \ m = 0 \ n = 0" by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff) lemma gcd_commute: "gcd m n = gcd n m" @@ -117,7 +117,7 @@ apply (blast intro: dvd_trans) done -lemma gcd_1_left [simp]: "gcd (Suc 0) m = 1" +lemma gcd_1_left [simp, algebra]: "gcd (Suc 0) m = 1" by (simp add: gcd_commute) text {* @@ -132,11 +132,11 @@ apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2) done -lemma gcd_mult [simp]: "gcd k (k * n) = k" +lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k" apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric]) done -lemma gcd_self [simp]: "gcd k k = k" +lemma gcd_self [simp, algebra]: "gcd k k = k" apply (rule gcd_mult [of k 1, simplified]) done @@ -163,13 +163,13 @@ text {* \medskip Addition laws *} -lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" +lemma gcd_add1 [simp,algebra]: "gcd (m + n) n = gcd m n" apply (case_tac "n = 0") apply (simp_all add: gcd_non_0) apply (simp add: mod_add_self2) done -lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" +lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n" proof - have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute) also have "... = gcd (n + m) m" by (simp add: add_commute) @@ -178,15 +178,15 @@ finally show ?thesis . qed -lemma gcd_add2' [simp]: "gcd m (n + m) = gcd m n" +lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n" apply (subst add_commute) apply (rule gcd_add2) done -lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" +lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n" by (induct k) (simp_all add: add_assoc) -lemma gcd_dvd_prod: "gcd m n dvd m * n" +lemma gcd_dvd_prod: "gcd m n dvd m * n" using mult_dvd_mono [of 1] by auto text {* @@ -216,8 +216,239 @@ with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp qed + +lemma gcd_unique: "d dvd a\d dvd b \ (\e. e dvd a \ e dvd b \ e dvd d) \ d = gcd a b" +proof(auto) + assume H: "d dvd a" "d dvd b" "\e. e dvd a \ e dvd b \ e dvd d" + from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] + have th: "gcd a b dvd d" by blast + from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd a b" by blast +qed + +lemma gcd_eq: assumes H: "\d. d dvd x \ d dvd y \ d dvd u \ d dvd v" + shows "gcd x y = gcd u v" +proof- + from H have "\d. d dvd x \ d dvd y \ d dvd gcd u v" by simp + with gcd_unique[of "gcd u v" x y] show ?thesis by auto +qed + +lemma ind_euclid: + assumes c: " \a b. P (a::nat) b \ P b a" and z: "\a. P a 0" + and add: "\a b. P a b \ P a (a + b)" + shows "P a b" +proof(induct n\"a+b" arbitrary: a b rule: nat_less_induct) + fix n a b + assume H: "\m < n. \a b. m = a + b \ P a b" "n = a + b" + have "a = b \ a < b \ b < a" by arith + moreover {assume eq: "a= b" + from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq by simp} + moreover + {assume lt: "a < b" + hence "a + b - a < n \ a = 0" using H(2) by arith + moreover + {assume "a =0" with z c have "P a b" by blast } + moreover + {assume ab: "a + b - a < n" + have th0: "a + b - a = a + (b - a)" using lt by arith + from add[rule_format, OF H(1)[rule_format, OF ab th0]] + have "P a b" by (simp add: th0[symmetric])} + ultimately have "P a b" by blast} + moreover + {assume lt: "a > b" + hence "b + a - b < n \ b = 0" using H(2) by arith + moreover + {assume "b =0" with z c have "P a b" by blast } + moreover + {assume ab: "b + a - b < n" + have th0: "b + a - b = b + (a - b)" using lt by arith + from add[rule_format, OF H(1)[rule_format, OF ab th0]] + have "P b a" by (simp add: th0[symmetric]) + hence "P a b" using c by blast } + ultimately have "P a b" by blast} +ultimately show "P a b" by blast +qed + +lemma bezout_lemma: + assumes ex: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" + shows "\d x y. d dvd a \ d dvd a + b \ (a * x = (a + b) * y + d \ (a + b) * x = a * y + d)" +using ex +apply clarsimp +apply (rule_tac x="d" in exI, simp add: dvd_add) +apply (case_tac "a * x = b * y + d" , simp_all) +apply (rule_tac x="x + y" in exI) +apply (rule_tac x="y" in exI) +apply algebra +apply (rule_tac x="x" in exI) +apply (rule_tac x="x + y" in exI) +apply algebra +done + +lemma bezout_add: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" +apply(induct a b rule: ind_euclid) +apply blast +apply clarify +apply (rule_tac x="a" in exI, simp add: dvd_add) +apply clarsimp +apply (rule_tac x="d" in exI) +apply (case_tac "a * x = b * y + d", simp_all add: dvd_add) +apply (rule_tac x="x+y" in exI) +apply (rule_tac x="y" in exI) +apply algebra +apply (rule_tac x="x" in exI) +apply (rule_tac x="x+y" in exI) +apply algebra +done + +lemma bezout: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x - b * y = d \ b * x - a * y = d)" +using bezout_add[of a b] +apply clarsimp +apply (rule_tac x="d" in exI, simp) +apply (rule_tac x="x" in exI) +apply (rule_tac x="y" in exI) +apply auto +done + + +text {* We can get a stronger version with a nonzeroness assumption. *} +lemma divides_le: "m dvd n ==> m <= n \ n = (0::nat)" by (auto simp add: dvd_def) + +lemma bezout_add_strong: assumes nz: "a \ (0::nat)" + shows "\d x y. d dvd a \ d dvd b \ a * x = b * y + d" +proof- + from nz have ap: "a > 0" by simp + from bezout_add[of a b] + have "(\d x y. d dvd a \ d dvd b \ a * x = b * y + d) \ (\d x y. d dvd a \ d dvd b \ b * x = a * y + d)" by blast + moreover + {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d" + from H have ?thesis by blast } + moreover + {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d" + {assume b0: "b = 0" with H have ?thesis by simp} + moreover + {assume b: "b \ 0" hence bp: "b > 0" by simp + from divides_le[OF H(2)] b have "d < b \ d = b" using le_less by blast + moreover + {assume db: "d=b" + from prems have ?thesis apply simp + apply (rule exI[where x = b], simp) + apply (rule exI[where x = b]) + by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} + moreover + {assume db: "d < b" + {assume "x=0" hence ?thesis using prems by simp } + moreover + {assume x0: "x \ 0" hence xp: "x > 0" by simp + + from db have "d \ b - 1" by simp + hence "d*b \ b*(b - 1)" by simp + with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] + have dble: "d*b \ x*b*(b - 1)" using bp by simp + from H (3) have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra + hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp + hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" + by (simp only: diff_add_assoc[OF dble, of d, symmetric]) + hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" + by (simp only: diff_mult_distrib2 add_commute mult_ac) + hence ?thesis using H(1,2) + apply - + apply (rule exI[where x=d], simp) + apply (rule exI[where x="(b - 1) * y"]) + by (rule exI[where x="x*(b - 1) - d"], simp)} + ultimately have ?thesis by blast} + ultimately have ?thesis by blast} + ultimately have ?thesis by blast} + ultimately show ?thesis by blast +qed + + +lemma bezout_gcd: "\x y. a * x - b * y = gcd a b \ b * x - a * y = gcd a b" +proof- + let ?g = "gcd a b" + from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \ b * x - a * y = d" by blast + from d(1,2) have "d dvd ?g" by simp + then obtain k where k: "?g = d*k" unfolding dvd_def by blast + from d(3) have "(a * x - b * y)*k = d*k \ (b * x - a * y)*k = d*k" by blast + hence "a * x * k - b * y*k = d*k \ b * x * k - a * y*k = d*k" + by (algebra add: diff_mult_distrib) + hence "a * (x * k) - b * (y*k) = ?g \ b * (x * k) - a * (y*k) = ?g" + by (simp add: k mult_assoc) + thus ?thesis by blast +qed + +lemma bezout_gcd_strong: assumes a: "a \ 0" + shows "\x y. a * x = b * y + gcd a b" +proof- + let ?g = "gcd a b" + from bezout_add_strong[OF a, of b] + obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast + from d(1,2) have "d dvd ?g" by simp + then obtain k where k: "?g = d*k" unfolding dvd_def by blast + from d(3) have "a * x * k = (b * y + d) *k " by algebra + hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) + thus ?thesis by blast +qed + +lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b" +by(simp add: gcd_mult_distrib2 mult_commute) + +lemma gcd_bezout: "(\x y. a * x - b * y = d \ b * x - a * y = d) \ gcd a b dvd d" + (is "?lhs \ ?rhs") +proof- + let ?g = "gcd a b" + {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast + from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \ b * x - a * y = ?g" + by blast + hence "(a * x - b * y)*k = ?g*k \ (b * x - a * y)*k = ?g*k" by auto + hence "a * x*k - b * y*k = ?g*k \ b * x * k - a * y*k = ?g*k" + by (simp only: diff_mult_distrib) + hence "a * (x*k) - b * (y*k) = d \ b * (x * k) - a * (y*k) = d" + by (simp add: k[symmetric] mult_assoc) + hence ?lhs by blast} + moreover + {fix x y assume H: "a * x - b * y = d \ b * x - a * y = d" + have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y" + using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all + from dvd_diff[OF dv(1,2)] dvd_diff[OF dv(3,4)] H + have ?rhs by auto} + ultimately show ?thesis by blast +qed + +lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd a b dvd d" +proof- + let ?g = "gcd a b" + have dv: "?g dvd a*x" "?g dvd b * y" + using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all + from dvd_add[OF dv] H + show ?thesis by auto +qed + +lemma gcd_mult': "gcd b (a * b) = b" +by (simp add: gcd_mult mult_commute[of a b]) + +lemma gcd_add: "gcd(a + b) b = gcd a b" + "gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b" +apply (simp_all add: gcd_add1) +by (simp add: gcd_commute gcd_add1) + +lemma gcd_sub: "b <= a ==> gcd(a - b) b = gcd a b" "a <= b ==> gcd a (b - a) = gcd a b" +proof- + {fix a b assume H: "b \ (a::nat)" + hence th: "a - b + b = a" by arith + from gcd_add(1)[of "a - b" b] th have "gcd(a - b) b = gcd a b" by simp} + note th = this +{ + assume ab: "b \ a" + from th[OF ab] show "gcd (a - b) b = gcd a b" by blast +next + assume ab: "a \ b" + from th[OF ab] show "gcd a (b - a) = gcd a b" + by (simp add: gcd_commute)} +qed + + subsection {* LCM defined by GCD *} + definition lcm :: "nat \ nat \ nat" where @@ -324,7 +555,7 @@ lemma gcd_diff2: "m \ n ==> gcd n (n - m) = gcd n m" apply (subgoal_tac "n = m + (n - m)") - apply (erule ssubst, rule gcd_add1_eq, simp) + apply (erule ssubst, rule gcd_add1_eq, simp) done @@ -334,27 +565,28 @@ zgcd :: "int \ int \ int" where "zgcd i j = int (gcd (nat (abs i)) (nat (abs j)))" -lemma zgcd_zdvd1 [iff,simp]: "zgcd i j dvd i" +lemma zgcd_zdvd1 [iff,simp, algebra]: "zgcd i j dvd i" by (simp add: zgcd_def int_dvd_iff) -lemma zgcd_zdvd2 [iff,simp]: "zgcd i j dvd j" +lemma zgcd_zdvd2 [iff,simp, algebra]: "zgcd i j dvd j" by (simp add: zgcd_def int_dvd_iff) lemma zgcd_pos: "zgcd i j \ 0" by (simp add: zgcd_def) -lemma zgcd0 [simp]: "(zgcd i j = 0) = (i = 0 \ j = 0)" +lemma zgcd0 [simp,algebra]: "(zgcd i j = 0) = (i = 0 \ j = 0)" by (simp add: zgcd_def gcd_zero) arith lemma zgcd_commute: "zgcd i j = zgcd j i" unfolding zgcd_def by (simp add: gcd_commute) -lemma zgcd_zminus [simp]: "zgcd (- i) j = zgcd i j" +lemma zgcd_zminus [simp, algebra]: "zgcd (- i) j = zgcd i j" unfolding zgcd_def by simp -lemma zgcd_zminus2 [simp]: "zgcd i (- j) = zgcd i j" +lemma zgcd_zminus2 [simp, algebra]: "zgcd i (- j) = zgcd i j" unfolding zgcd_def by simp + (* should be solved by algebra*) lemma zrelprime_dvd_mult: "zgcd i j = 1 \ i dvd k * j \ i dvd k" unfolding zgcd_def proof - @@ -418,12 +650,10 @@ with zgcd_pos show "?g' = 1" by simp qed - (* IntPrimes stuff *) - -lemma zgcd_0 [simp]: "zgcd m 0 = abs m" +lemma zgcd_0 [simp, algebra]: "zgcd m 0 = abs m" by (simp add: zgcd_def abs_if) -lemma zgcd_0_left [simp]: "zgcd 0 m = abs m" +lemma zgcd_0_left [simp, algebra]: "zgcd 0 m = abs m" by (simp add: zgcd_def abs_if) lemma zgcd_non_0: "0 < n ==> zgcd m n = zgcd n (m mod n)" @@ -440,16 +670,16 @@ apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto) done -lemma zgcd_1 [simp]: "zgcd m 1 = 1" +lemma zgcd_1 [simp, algebra]: "zgcd m 1 = 1" by (simp add: zgcd_def abs_if) -lemma zgcd_0_1_iff [simp]: "zgcd 0 m = 1 \ \m\ = 1" +lemma zgcd_0_1_iff [simp, algebra]: "zgcd 0 m = 1 \ \m\ = 1" by (simp add: zgcd_def abs_if) -lemma zgcd_greatest_iff: "k dvd zgcd m n = (k dvd m \ k dvd n)" +lemma zgcd_greatest_iff[algebra]: "k dvd zgcd m n = (k dvd m \ k dvd n)" by (simp add: zgcd_def abs_if int_dvd_iff dvd_int_iff nat_dvd_iff) -lemma zgcd_1_left [simp]: "zgcd 1 m = 1" +lemma zgcd_1_left [simp, algebra]: "zgcd 1 m = 1" by (simp add: zgcd_def gcd_1_left) lemma zgcd_assoc: "zgcd (zgcd k m) n = zgcd k (zgcd m n)" @@ -484,10 +714,10 @@ definition "zlcm i j = int (lcm(nat(abs i)) (nat(abs j)))" -lemma dvd_zlcm_self1[simp]: "i dvd zlcm i j" +lemma dvd_zlcm_self1[simp, algebra]: "i dvd zlcm i j" by(simp add:zlcm_def dvd_int_iff) -lemma dvd_zlcm_self2[simp]: "j dvd zlcm i j" +lemma dvd_zlcm_self2[simp, algebra]: "j dvd zlcm i j" by(simp add:zlcm_def dvd_int_iff)