# HG changeset patch # User traytel # Date 1378977829 -7200 # Node ID 4b5f42cfa24456e0c4f5c82d4ed4aa3601e81c54 # Parent 3858246c7c8f80f9afe6e0b694884dab7eade5ac removed unused/inlinable theorems diff -r 3858246c7c8f -r 4b5f42cfa244 src/HOL/BNF/BNF_Def.thy --- a/src/HOL/BNF/BNF_Def.thy Thu Sep 12 11:05:19 2013 +0200 +++ b/src/HOL/BNF/BNF_Def.thy Thu Sep 12 11:23:49 2013 +0200 @@ -110,10 +110,6 @@ lemma Collect_split_Grp_inD: "z \ Collect (split (Grp A f)) \ fst z \ A" unfolding Grp_def o_def by auto -lemma wpull_Grp: -"wpull (Collect (split (Grp A f))) A (f ` A) f id fst snd" -unfolding wpull_def Grp_def by auto - definition "pick_middlep P Q a c = (SOME b. P a b \ Q b c)" lemma pick_middlep: diff -r 3858246c7c8f -r 4b5f42cfa244 src/HOL/BNF/BNF_Util.thy --- a/src/HOL/BNF/BNF_Util.thy Thu Sep 12 11:05:19 2013 +0200 +++ b/src/HOL/BNF/BNF_Util.thy Thu Sep 12 11:23:49 2013 +0200 @@ -47,16 +47,9 @@ lemma bijI: "\\x y. (f x = f y) = (x = y); \y. \x. y = f x\ \ bij f" unfolding bij_def inj_on_def by auto blast -lemma pair_mem_Collect_split: -"(\x y. (x, y) \ {(x, y). P x y}) = P" -by simp - lemma Collect_pair_mem_eq: "{(x, y). (x, y) \ R} = R" by simp -lemma Collect_fst_snd_mem_eq: "{p. (fst p, snd p) \ A} = A" -by simp - (* Operator: *) definition "Gr A f = {(a, f a) | a. a \ A}" diff -r 3858246c7c8f -r 4b5f42cfa244 src/HOL/BNF/Tools/bnf_tactics.ML --- a/src/HOL/BNF/Tools/bnf_tactics.ML Thu Sep 12 11:05:19 2013 +0200 +++ b/src/HOL/BNF/Tools/bnf_tactics.ML Thu Sep 12 11:23:49 2013 +0200 @@ -102,7 +102,7 @@ rtac (unfold_thms ctxt (IJrel_defs @ IJsrel_defs @ @{thms Collect_pair_mem_eq mem_Collect_eq fst_conv snd_conv}) dtor_srel RS trans) 1 THEN unfold_thms_tac ctxt (srel_def :: - @{thms Collect_fst_snd_mem_eq mem_Collect_eq pair_mem_Collect_split fst_conv snd_conv + @{thms pair_collapse Collect_mem_eq mem_Collect_eq prod.cases fst_conv snd_conv split_conv}) THEN rtac refl 1;