# HG changeset patch # User haftmann # Date 1542881191 0 # Node ID 4b6ddc5989fca8350458c3cb008c2c73647df437 # Parent 39ba40eb2150d2e7a2cd7f4289072438161338b2 removed legacy input syntax diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Abstract_Topology.thy Thu Nov 22 10:06:31 2018 +0000 @@ -2792,7 +2792,7 @@ show "U ` \ \ \" using \\ \ \\ U by auto next - show "f ` S \ UNION \ U" + show "f ` S \ \ (U ` \)" using \(2-3) U UnionE subset_eq U by fastforce qed qed diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Thu Nov 22 10:06:31 2018 +0000 @@ -4991,11 +4991,11 @@ and ope\: "\C. C \ components S \ openin (subtopology euclidean S) (\ C)" and hom\: "\C. C \ components S \ homotopic_with (\x. True) (\ C) T f g" by metis - have Seq: "S = UNION (components S) \" + have Seq: "S = \ (\ ` components S)" proof - show "S \ UNION (components S) \" + show "S \ \ (\ ` components S)" by (metis Sup_mono Union_components \ imageI) - show "UNION (components S) \ \ S" + show "\ (\ ` components S) \ S" using ope\ openin_imp_subset by fastforce qed show ?lhs diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Caratheodory.thy --- a/src/HOL/Analysis/Caratheodory.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Caratheodory.thy Thu Nov 22 10:06:31 2018 +0000 @@ -187,13 +187,13 @@ case 0 show ?case using f by (simp add: positive_def) next case (Suc n) - have 2: "A n \ UNION {0.. \ (A ` {0.. lambda_system \ M f" using A by blast interpret l: algebra \ "lambda_system \ M f" using f by (rule lambda_system_algebra) - have 4: "UNION {0.. lambda_system \ M f" + have 4: "\ (A ` {0.. lambda_system \ M f" using A l.UNION_in_sets by simp from Suc.hyps show ?case by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4]) @@ -250,7 +250,7 @@ fix n have UNION_in: "(\i\{0.. M" by (metis A'' UNION_in_sets) - have le_fa: "f (UNION {0.. a) \ f a" using A'' + have le_fa: "f (\ (A ` {0.. a) \ f a" using A'' by (blast intro: increasingD [OF inc] A'' UNION_in_sets) have ls: "(\i\{0.. lambda_system \ M f" using ls.UNION_in_sets by (simp add: A) diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Change_Of_Vars.thy --- a/src/HOL/Analysis/Change_Of_Vars.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Change_Of_Vars.thy Thu Nov 22 10:06:31 2018 +0000 @@ -652,12 +652,12 @@ proof (intro exI conjI) show "range ?DD \ Collect compact" using D by clarsimp (metis mem_Collect_eq rangeI split_conv subsetCE surj_pair) - show "S = UNION UNIV ?DD" + show "S = \ (range ?DD)" proof - show "S \ UNION UNIV ?DD" + show "S \ \ (range ?DD)" using D F by clarsimp (metis UN_iff old.prod.case prod_decode_inverse prod_encode_eq) - show "UNION UNIV ?DD \ S" + show "\ (range ?DD) \ S" using D F by fastforce qed qed @@ -2713,11 +2713,11 @@ qed show "\T. f ` S \ T \ T \ lmeasurable \ ?\ T \ e" proof (intro exI conjI) - show "f ` S \ UNION \ g" + show "f ` S \ \ (g ` \)" using covers sub_g by force - show "UNION \ g \ lmeasurable" + show "\ (g ` \) \ lmeasurable" by (rule fmeasurable_UN_bound [OF \countable \\ meas_g le_e]) - show "?\ (UNION \ g) \ e" + show "?\ (\ (g ` \)) \ e" by (rule measure_UN_bound [OF \countable \\ meas_g le_e]) qed qed @@ -3594,7 +3594,7 @@ show "norm (integral (?U k) (norm \ ?D)) \ integral (\n. F n) (norm \ ?D)" unfolding integral_restrict_UNIV [of _ "norm \ ?D", symmetric] proof (rule integral_norm_bound_integral) - show "(\x. if x \ UNION {..k} F then (norm \ ?D) x else 0) integrable_on UNIV" + show "(\x. if x \ \ (F ` {..k}) then (norm \ ?D) x else 0) integrable_on UNIV" "(\x. if x \ (\n. F n) then (norm \ ?D) x else 0) integrable_on UNIV" using DU(1) DS unfolding absolutely_integrable_on_def o_def integrable_restrict_UNIV by auto diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Connected.thy Thu Nov 22 10:06:31 2018 +0000 @@ -4762,7 +4762,7 @@ moreover have "\\ \ \\" using \_def by blast ultimately have eq1: "\\ = \\" .. - have eq2: "\\ = UNION \ G" + have eq2: "\\ = \ (G ` \)" using G eq1 by auto show ?thesis apply (rule_tac \' = "G ` \" in that) @@ -4781,7 +4781,7 @@ by metis have [simp]: "\\'. \' \ \ \ \\' = U \ \(tf ` \')" using tf by fastforce - obtain \ where "countable \ \ \ \ tf ` \" "\\ = UNION \ tf" + obtain \ where "countable \ \ \ \ tf ` \" "\\ = \(tf ` \)" using tf by (force intro: Lindelof [of "tf ` \"]) then obtain \' where \': "\' \ \" "countable \'" "\\' = \\" by (clarsimp simp add: countable_subset_image) diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy --- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Thu Nov 22 10:06:31 2018 +0000 @@ -1937,25 +1937,25 @@ shows measurable_countable_negligible_Union: "(\n. S n) \ lmeasurable" and measure_countable_negligible_Union: "(\n. (measure lebesgue (S n))) sums measure lebesgue (\n. S n)" (is ?Sums) proof - - have 1: "UNION {..n} S \ lmeasurable" for n + have 1: "\ (S ` {..n}) \ lmeasurable" for n using S by blast - have 2: "measure lebesgue (UNION {..n} S) \ B" for n + have 2: "measure lebesgue (\ (S ` {..n})) \ B" for n proof - - have "measure lebesgue (UNION {..n} S) \ (\k\n. measure lebesgue (S k))" + have "measure lebesgue (\ (S ` {..n})) \ (\k\n. measure lebesgue (S k))" by (simp add: S fmeasurableD measure_UNION_le) with leB show ?thesis using order_trans by blast qed - have 3: "\n. UNION {..n} S \ UNION {..Suc n} S" + have 3: "\n. \ (S ` {..n}) \ \ (S ` {..Suc n})" by (simp add: SUP_subset_mono) - have eqS: "(\n. S n) = (\n. UNION {..n} S)" + have eqS: "(\n. S n) = (\n. \ (S ` {..n}))" using atLeastAtMost_iff by blast - also have "(\n. UNION {..n} S) \ lmeasurable" + also have "(\n. \ (S ` {..n})) \ lmeasurable" by (intro measurable_nested_Union [OF 1 2] 3) finally show "(\n. S n) \ lmeasurable" . - have eqm: "(\i\n. measure lebesgue (S i)) = measure lebesgue (UNION {..n} S)" for n + have eqm: "(\i\n. measure lebesgue (S i)) = measure lebesgue (\ (S ` {..n}))" for n using assms by (simp add: measure_negligible_finite_Union_image pairwise_mono) - have "(\n. (measure lebesgue (S n))) sums measure lebesgue (\n. UNION {..n} S)" + have "(\n. (measure lebesgue (S n))) sums measure lebesgue (\n. \ (S ` {..n}))" by (simp add: sums_def' eqm atLeast0AtMost) (intro measure_nested_Union [OF 1 2] 3) then show ?Sums by (simp add: eqS) @@ -1981,7 +1981,7 @@ using bo bounded_subset_cbox_symmetric by metis then have B: "(\k\n. measure lebesgue (S k)) \ measure lebesgue (cbox a b)" for n proof - - have "(\k\n. measure lebesgue (S k)) = measure lebesgue (UNION {..n} S)" + have "(\k\n. measure lebesgue (S k)) = measure lebesgue (\ (S ` {..n}))" using measure_negligible_finite_Union_image [OF _ _ pairwise_subset] djointish by (metis S finite_atMost subset_UNIV) also have "\ \ measure lebesgue (cbox a b)" @@ -2024,7 +2024,7 @@ have eq: "(\n. \k\n. from_nat_into \ k) = (\\)" using \countable \\ False by (auto intro: from_nat_into dest: from_nat_into_surj [OF \countable \\]) - show "measure lebesgue (\\) - e < measure lebesgue (UNION {..N} (from_nat_into \))" + show "measure lebesgue (\\) - e < measure lebesgue (\ (from_nat_into \ ` {..N}))" using N [OF order_refl] by (auto simp: eq algebra_simps dist_norm) qed auto @@ -2779,9 +2779,9 @@ by (simp add: False \(1) from_nat_into infinite_imp_nonempty negl_int) have TB: "(\k\n. ?\ (?T k)) \ ?\ S + e" for n proof - - have "(\k\n. ?\ (?T k)) = ?\ (UNION {..n} ?T)" + have "(\k\n. ?\ (?T k)) = ?\ (\ (?T ` {..n}))" by (simp add: pairwise_def TM TN measure_negligible_finite_Union_image) - also have "?\ (UNION {..n} ?T) \ ?\ S + e" + also have "?\ (\ (?T ` {..n})) \ ?\ S + e" using fincase [of "?T ` {..n}"] T by (auto simp: bij_betw_def) finally show ?thesis . qed diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Improper_Integral.thy --- a/src/HOL/Analysis/Improper_Integral.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Improper_Integral.thy Thu Nov 22 10:06:31 2018 +0000 @@ -398,11 +398,11 @@ qed also have "... \ ?rhs" proof (rule subadditive_content_division) - show "extend ` \ division_of UNION \ extend" + show "extend ` \ division_of \ (extend ` \)" using int_extend_disjoint apply (auto simp: division_of_def \finite \\ extend) using extend_def apply blast done - show "UNION \ extend \ cbox a b" + show "\ (extend ` \) \ cbox a b" using extend by fastforce qed finally show ?thesis . diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Starlike.thy Thu Nov 22 10:06:31 2018 +0000 @@ -5128,7 +5128,7 @@ by auto next assume "N - X \ N - J" - with J have "N - X \ UNION \ ((-) N) \ N - J" + with J have "N - X \ \ ((-) N ` \) \ N - J" by auto with \J \ \\ show ?thesis by blast @@ -7920,7 +7920,7 @@ finally show "closure (\x\- S. \y\ball 0 (1 / (2 + real n)). {x + y}) \ (\x \ -S. \y\ball 0 (1 / (1 + real n)). {x + y})" . qed - have "S \ UNION UNIV ?C" + have "S \ \ (range ?C)" proof fix x assume x: "x \ S" @@ -7947,10 +7947,10 @@ with that show ?thesis by auto qed - with N2 show "x \ UNION UNIV ?C" + with N2 show "x \ \ (range ?C)" by (rule_tac a = "N1+N2" in UN_I) (auto simp: dist_norm norm_minus_commute) qed - then show "UNION UNIV ?C = S" by auto + then show "\ (range ?C) = S" by auto qed ultimately show ?thesis using that by metis diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Analysis/Topology_Euclidean_Space.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Analysis/Topology_Euclidean_Space.thy Thu Nov 22 10:06:31 2018 +0000 @@ -448,11 +448,11 @@ by (intro exI[of _ "{i \ j| i j. i \ x \ j \ y}"]) (auto dest: x(2) y(2)) next case (UN K) - then have "\k\K. \B'\{b. finite b \ b \ B}. UNION B' Inter = k" by auto + then have "\k\K. \B'\{b. finite b \ b \ B}. \ (Inter ` B') = k" by auto then obtain k where "\ka\K. k ka \ {b. finite b \ b \ B} \ \(Inter ` (k ka)) = ka" unfolding bchoice_iff .. - then show "\B'\{b. finite b \ b \ B}. UNION B' Inter = \K" + then show "\B'\{b. finite b \ b \ B}. \ (Inter ` B') = \K" by (intro exI[of _ "\(k ` K)"]) auto next case (Basis S) diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Computational_Algebra/Formal_Power_Series.thy --- a/src/HOL/Computational_Algebra/Formal_Power_Series.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Computational_Algebra/Formal_Power_Series.thy Thu Nov 22 10:06:31 2018 +0000 @@ -3378,8 +3378,8 @@ (is "?l = ?r") proof - let ?KM = "{(k,m). k + m \ n}" - let ?f = "\s. UNION {(0::nat)..s} (\i. {(i,s - i)})" - have th0: "?KM = UNION {0..n} ?f" + let ?f = "\s. \i\{0..s}. {(i, s - i)}" + have th0: "?KM = \ (?f ` {0..n})" by auto show "?l = ?r " unfolding th0 diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Decision_Procs/MIR.thy --- a/src/HOL/Decision_Procs/MIR.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Decision_Procs/MIR.thy Thu Nov 22 10:06:31 2018 +0000 @@ -7,6 +7,12 @@ "HOL-Library.Code_Target_Numeral" "HOL-Library.Old_Recdef" begin +section \Prelude\ + +abbreviation (input) UNION :: "'a set \ ('a \ 'b set) \ 'b set" + where "UNION A f \ \ (f ` A)" \ \legacy\ + + section \Quantifier elimination for \\ (0, 1, +, floor, <)\\ declare of_int_floor_cancel [simp del] diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Library/Countable_Set_Type.thy --- a/src/HOL/Library/Countable_Set_Type.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Library/Countable_Set_Type.thy Thu Nov 22 10:06:31 2018 +0000 @@ -440,7 +440,7 @@ lemma rel_cset_cUNION: "\ rel_cset Q A B; rel_fun Q (rel_cset R) f g \ - \ rel_cset R (cUNION A f) (cUNION B g)" + \ rel_cset R (cUnion (cimage f A)) (cUnion (cimage g B))" unfolding rel_fun_def by transfer(erule rel_set_UNION, simp add: rel_fun_def) lemma rel_cset_csingle_iff [simp]: "rel_cset R (csingle x) (csingle y) \ R x y" diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Library/Set_Idioms.thy --- a/src/HOL/Library/Set_Idioms.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Library/Set_Idioms.thy Thu Nov 22 10:06:31 2018 +0000 @@ -375,9 +375,9 @@ using R unfolding relative_to_def union_of_def by auto then obtain f where f: "\T. T \ \ \ P (f T)" "\T. T \ \ \ U \ (f T) = T" by metis - then have "\\'\Collect P. \\' = UNION \ f" + then have "\\'\Collect P. \\' = \ (f ` \)" by (metis image_subset_iff mem_Collect_eq) - moreover have eq: "U \ UNION \ f = \\" + moreover have eq: "U \ \ (f ` \) = \\" using f by auto ultimately show ?thesis unfolding relative_to_def union_of_def arbitrary_def \S = \\\ @@ -404,14 +404,14 @@ using R unfolding relative_to_def union_of_def by auto then obtain f where f: "\T. T \ \ \ P (f T)" "\T. T \ \ \ U \ (f T) = T" by metis - then have "\\'\Collect P. \\' = UNION \ f" + then have "\\'\Collect P. \\' = \ (f ` \)" by (metis image_subset_iff mem_Collect_eq) - moreover have eq: "U \ UNION \ f = \\" + moreover have eq: "U \ \ (f ` \) = \\" using f by auto ultimately show ?thesis using \finite \\ f unfolding relative_to_def union_of_def \S = \\\ - by (rule_tac x="UNION \ f" in exI) (metis finite_imageI image_subsetI mem_Collect_eq) + by (rule_tac x="\ (f ` \)" in exI) (metis finite_imageI image_subsetI mem_Collect_eq) qed ultimately show ?thesis by blast @@ -434,14 +434,14 @@ using R unfolding relative_to_def union_of_def by auto then obtain f where f: "\T. T \ \ \ P (f T)" "\T. T \ \ \ U \ (f T) = T" by metis - then have "\\'\Collect P. \\' = UNION \ f" + then have "\\'\Collect P. \\' = \ (f ` \)" by (metis image_subset_iff mem_Collect_eq) - moreover have eq: "U \ UNION \ f = \\" + moreover have eq: "U \ \ (f ` \) = \\" using f by auto ultimately show ?thesis using \countable \\ f unfolding relative_to_def union_of_def \S = \\\ - by (rule_tac x="UNION \ f" in exI) (metis countable_image image_subsetI mem_Collect_eq) + by (rule_tac x="\ (f ` \)" in exI) (metis countable_image image_subsetI mem_Collect_eq) qed ultimately show ?thesis by blast diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/Probability/Independent_Family.thy --- a/src/HOL/Probability/Independent_Family.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/Probability/Independent_Family.thy Thu Nov 22 10:06:31 2018 +0000 @@ -611,15 +611,15 @@ unfolding indep_vars_def2 by (intro conj_cong indep_sets_cong) auto definition (in prob_space) tail_events where - "tail_events A = (\n. sigma_sets (space M) (UNION {n..} A))" + "tail_events A = (\n. sigma_sets (space M) (\ (A ` {n..})))" lemma (in prob_space) tail_events_sets: assumes A: "\i::nat. A i \ events" shows "tail_events A \ events" proof fix X assume X: "X \ tail_events A" - let ?A = "(\n. sigma_sets (space M) (UNION {n..} A))" - from X have "\n::nat. X \ sigma_sets (space M) (UNION {n..} A)" by (auto simp: tail_events_def) + let ?A = "(\n. sigma_sets (space M) (\ (A ` {n..})))" + from X have "\n::nat. X \ sigma_sets (space M) (\ (A ` {n..}))" by (auto simp: tail_events_def) from this[of 0] have "X \ sigma_sets (space M) (\(A ` UNIV))" by simp then show "X \ events" by induct (insert A, auto) @@ -630,16 +630,16 @@ shows "sigma_algebra (space M) (tail_events A)" unfolding tail_events_def proof (simp add: sigma_algebra_iff2, safe) - let ?A = "(\n. sigma_sets (space M) (UNION {n..} A))" + let ?A = "(\n. sigma_sets (space M) (\ (A ` {n..})))" interpret A: sigma_algebra "space M" "A i" for i by fact { fix X x assume "X \ ?A" "x \ X" - then have "\n. X \ sigma_sets (space M) (UNION {n..} A)" by auto + then have "\n. X \ sigma_sets (space M) (\ (A ` {n..}))" by auto from this[of 0] have "X \ sigma_sets (space M) (\(A ` UNIV))" by simp then have "X \ space M" by induct (insert A.sets_into_space, auto) with \x \ X\ show "x \ space M" by auto } { fix F :: "nat \ 'a set" and n assume "range F \ ?A" - then show "(\(F ` UNIV)) \ sigma_sets (space M) (UNION {n..} A)" + then show "(\(F ` UNIV)) \ sigma_sets (space M) (\ (A ` {n..}))" by (intro sigma_sets.Union) auto } qed (auto intro!: sigma_sets.Compl sigma_sets.Empty) diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/UNITY/Comp/Alloc.thy --- a/src/HOL/UNITY/Comp/Alloc.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/UNITY/Comp/Alloc.thy Thu Nov 22 10:06:31 2018 +0000 @@ -99,7 +99,7 @@ client_allowed_acts :: "'a clientState_d program set" where "client_allowed_acts = {F. AllowedActs F = - insert Id (UNION (preserves (funPair rel ask)) Acts)}" + insert Id (\ (Acts ` preserves (funPair rel ask)))}" definition client_spec :: "'a clientState_d program set" @@ -208,11 +208,9 @@ \ \environmental constraints\ network_allowed_acts :: "'a systemState program set" where "network_allowed_acts = - {F. AllowedActs F = - insert Id - (UNION (preserves allocRel Int - (INT i: lessThan Nclients. preserves(giv o sub i o client))) - Acts)}" + {F. AllowedActs F = insert Id + (\ (Acts ` (preserves allocRel \ (\i sub i \ client)))))}" definition network_spec :: "'a systemState program set" diff -r 39ba40eb2150 -r 4b6ddc5989fc src/HOL/UNITY/Comp/AllocImpl.thy --- a/src/HOL/UNITY/Comp/AllocImpl.thy Thu Nov 22 10:06:30 2018 +0000 +++ b/src/HOL/UNITY/Comp/AllocImpl.thy Thu Nov 22 10:06:31 2018 +0000 @@ -92,7 +92,7 @@ merge_allowed_acts :: "('a,'b) merge_d program set" where "merge_allowed_acts = {F. AllowedActs F = - insert Id (UNION (preserves (funPair merge.Out merge.iOut)) Acts)}" + insert Id (\ (Acts ` preserves (funPair merge.Out iOut)))}" definition merge_spec :: "('a,'b) merge_d program set"