# HG changeset patch # User wenzelm # Date 863790671 -7200 # Node ID 4bbeb1f58a23cc43d37751f51192c503c3b92388 # Parent 567c093297e6ef65851da5035c2422fc29c1b759 SYNC; diff -r 567c093297e6 -r 4bbeb1f58a23 doc-src/Intro/intro.ind --- a/doc-src/Intro/intro.ind Fri May 16 15:50:24 1997 +0200 +++ b/doc-src/Intro/intro.ind Fri May 16 15:51:11 1997 +0200 @@ -29,12 +29,12 @@ \subitem of main goal, 41 \subitem use of, 16, 28 \item axioms - \subitem Peano, 54 + \subitem Peano, 55 \indexspace \item {\tt ba}, 31 - \item {\tt back}, 59, 62 + \item {\tt back}, 59, 63 \item backtracking \subitem Prolog style, 62 \item {\tt bd}, 31 @@ -45,7 +45,7 @@ \indexspace - \item {\tt choplev}, 37, 64 + \item {\tt choplev}, 37, 65 \item classes, 3 \subitem built-in, \bold{25} \item classical reasoner, 39 @@ -53,7 +53,7 @@ \item constants, 3 \subitem clashes with variables, 9 \subitem declaring, \bold{48} - \subitem overloaded, 53 + \subitem overloaded, 54 \subitem polymorphic, 3 \item {\tt CPure} theory, 47 @@ -78,9 +78,9 @@ \item examples \subitem of deriving rules, 41 \subitem of induction, 57, 58 - \subitem of simplification, 59 + \subitem of simplification, 60 \subitem of tacticals, 37 - \subitem of theories, 48, 50--55, 61 + \subitem of theories, 48, 50--54, 56, 61 \subitem propositional, 17, 31, 32 \subitem with quantifiers, 18, 34, 35, 38 \item {\tt exE} theorem, 38 @@ -143,11 +143,11 @@ \indexspace - \item {\tt Nat} theory, 55 + \item {\tt Nat} theory, 56 \item {\tt nat} type, 3 \item {\tt not_def} theorem, 44 - \item {\tt notE} theorem, \bold{45}, 57 - \item {\tt notI} theorem, \bold{44}, 57 + \item {\tt notE} theorem, \bold{45}, 58 + \item {\tt notI} theorem, \bold{44}, 58 \indexspace @@ -160,7 +160,7 @@ \item parameters, \bold{8}, 34 \subitem lifting over, 15 \item {\tt Prolog} theory, 61 - \item Prolog interpreter, \bold{60} + \item Prolog interpreter, \bold{61} \item proof state, 16 \item proofs \subitem commands for, 30 @@ -181,7 +181,7 @@ \item {\tt read_instantiate}, 29 \item {\tt refl} theorem, 29 \item {\tt REPEAT}, 33, 38, 62, 64 - \item {\tt res_inst_tac}, 57, 59 + \item {\tt res_inst_tac}, 57, 60 \item reserved words, 24 \item resolution, 10, \bold{12} \subitem in backward proof, 15 @@ -208,8 +208,8 @@ \subitem depth-first, 63 \item signatures, \bold{9} \item {\tt Simp_tac}, 60 - \item simplification, 59 - \item simplification sets, 59 + \item simplification, 60 + \item simplification sets, 60 \item sort constraints, 25 \item sorts, \bold{5} \item {\tt spec} theorem, 28, 36, 37 @@ -233,7 +233,7 @@ \subitem basic operations on, \bold{27} \subitem printing of, 27 \item theories, \bold{9} - \subitem defining, 47--56 + \subitem defining, 47--57 \item {\tt thm} ML type, 27 \item {\tt topthm}, 42 \item {\tt Trueprop} constant, 6, 7, 25 diff -r 567c093297e6 -r 4bbeb1f58a23 doc-src/Logics/logics.ind --- a/doc-src/Logics/logics.ind Fri May 16 15:50:24 1997 +0200 +++ b/doc-src/Logics/logics.ind Fri May 16 15:51:11 1997 +0200 @@ -1,945 +1,945 @@ \begin{theindex} - \item {\tt !} symbol, 59, 61, 68, 69 - \item {\tt[]} symbol, 80 - \item {\tt\#} symbol, 80 - \item {\tt\#*} symbol, 46, 122 - \item {\tt\#+} symbol, 46, 122 - \item {\tt\#-} symbol, 46 - \item {\tt\&} symbol, 6, 59, 99 - \item {\tt *} symbol, 25, 60, 77, 113 - \item {\tt *} type, 75 - \item {\tt +} symbol, 42, 60, 77, 113 - \item {\tt +} type, 75 - \item {\tt -} symbol, 24, 60, 77, 122 - \item {\tt -->} symbol, 6, 59, 99, 113 - \item {\tt ->} symbol, 25 - \item {\tt -``} symbol, 24 - \item {\tt :} symbol, 24, 67 - \item {\tt <} constant, 78 - \item {\tt <} symbol, 77 - \item {\tt <->} symbol, 6, 99 - \item {\tt <=} constant, 78 - \item {\tt <=} symbol, 24, 67 - \item {\tt =} symbol, 6, 59, 99, 113 - \item {\tt ?} symbol, 59, 61, 68, 69 - \item {\tt ?!} symbol, 59 - \item {\tt\at} symbol, 59, 80 - \item {\tt `} symbol, 24, 113 - \item {\tt ``} symbol, 24, 67 - \item \verb'{}' symbol, 67 - \item {\tt |} symbol, 6, 59, 99 - \item {\tt |-|} symbol, 122 + \item {\tt !} symbol, 60, 62, 69, 70 + \item {\tt[]} symbol, 81 + \item {\tt\#} symbol, 81 + \item {\tt\#*} symbol, 47, 123 + \item {\tt\#+} symbol, 47, 123 + \item {\tt\#-} symbol, 47 + \item {\tt\&} symbol, 7, 60, 100 + \item {\tt *} symbol, 26, 61, 78, 114 + \item {\tt *} type, 76 + \item {\tt +} symbol, 43, 61, 78, 114 + \item {\tt +} type, 76 + \item {\tt -} symbol, 25, 61, 78, 123 + \item {\tt -->} symbol, 7, 60, 100, 114 + \item {\tt ->} symbol, 26 + \item {\tt -``} symbol, 25 + \item {\tt :} symbol, 25, 68 + \item {\tt <} constant, 79 + \item {\tt <} symbol, 78 + \item {\tt <->} symbol, 7, 100 + \item {\tt <=} constant, 79 + \item {\tt <=} symbol, 25, 68 + \item {\tt =} symbol, 7, 60, 100, 114 + \item {\tt ?} symbol, 60, 62, 69, 70 + \item {\tt ?!} symbol, 60 + \item {\tt\at} symbol, 60, 81 + \item {\tt `} symbol, 25, 114 + \item {\tt ``} symbol, 25, 68 + \item \verb'{}' symbol, 68 + \item {\tt |} symbol, 7, 60, 100 + \item {\tt |-|} symbol, 123 \indexspace - \item {\tt 0} constant, 24, 77, 111 + \item {\tt 0} constant, 25, 78, 112 \indexspace - \item {\tt absdiff_def} theorem, 122 - \item {\tt add_assoc} theorem, 122 - \item {\tt add_commute} theorem, 122 - \item {\tt add_def} theorem, 46, 122 - \item {\tt add_inverse_diff} theorem, 122 - \item {\tt add_mp_tac}, \bold{120} - \item {\tt add_mult_dist} theorem, 46, 122 - \item {\tt add_safes}, \bold{105} - \item {\tt add_typing} theorem, 122 - \item {\tt add_unsafes}, \bold{105} - \item {\tt addC0} theorem, 122 - \item {\tt addC_succ} theorem, 122 - \item {\tt ALL} symbol, 6, 25, 59, 61, 68, 69, 99 - \item {\tt All} constant, 6, 59, 99 - \item {\tt All_def} theorem, 63 - \item {\tt all_dupE} theorem, 4, 8, 65 - \item {\tt all_impE} theorem, 8 - \item {\tt allE} theorem, 4, 8, 65 - \item {\tt allI} theorem, 7, 65 - \item {\tt allL} theorem, 101, 104 - \item {\tt allL_thin} theorem, 102 - \item {\tt allR} theorem, 101 - \item {\tt and_def} theorem, 41, 63 - \item {\tt app_def} theorem, 48 - \item {\tt apply_def} theorem, 30 - \item {\tt apply_equality} theorem, 38, 39, 56 - \item {\tt apply_equality2} theorem, 38 - \item {\tt apply_iff} theorem, 38 - \item {\tt apply_Pair} theorem, 38, 56 - \item {\tt apply_type} theorem, 38 - \item {\tt arg_cong} theorem, 64 - \item {\tt Arith} theory, 45, 78, 121 + \item {\tt absdiff_def} theorem, 123 + \item {\tt add_assoc} theorem, 123 + \item {\tt add_commute} theorem, 123 + \item {\tt add_def} theorem, 47, 123 + \item {\tt add_inverse_diff} theorem, 123 + \item {\tt add_mp_tac}, \bold{121} + \item {\tt add_mult_dist} theorem, 47, 123 + \item {\tt add_safes}, \bold{106} + \item {\tt add_typing} theorem, 123 + \item {\tt add_unsafes}, \bold{106} + \item {\tt addC0} theorem, 123 + \item {\tt addC_succ} theorem, 123 + \item {\tt ALL} symbol, 7, 26, 60, 62, 69, 70, 100 + \item {\tt All} constant, 7, 60, 100 + \item {\tt All_def} theorem, 64 + \item {\tt all_dupE} theorem, 5, 9, 66 + \item {\tt all_impE} theorem, 9 + \item {\tt allE} theorem, 5, 9, 66 + \item {\tt allI} theorem, 8, 66 + \item {\tt allL} theorem, 102, 105 + \item {\tt allL_thin} theorem, 103 + \item {\tt allR} theorem, 102 + \item {\tt and_def} theorem, 42, 64 + \item {\tt app_def} theorem, 49 + \item {\tt apply_def} theorem, 31 + \item {\tt apply_equality} theorem, 39, 40, 57 + \item {\tt apply_equality2} theorem, 39 + \item {\tt apply_iff} theorem, 39 + \item {\tt apply_Pair} theorem, 39, 57 + \item {\tt apply_type} theorem, 39 + \item {\tt arg_cong} theorem, 65 + \item {\tt Arith} theory, 46, 79, 122 \item assumptions - \subitem contradictory, 15 - \subitem in {\CTT}, 110, 120 + \subitem contradictory, 16 + \subitem in {\CTT}, 111, 121 \indexspace - \item {\tt Ball} constant, 24, 28, 67, 69 - \item {\tt ball_cong} theorem, 31, 32 - \item {\tt Ball_def} theorem, 29, 70 - \item {\tt ballE} theorem, 31, 32, 71 - \item {\tt ballI} theorem, 32, 71 - \item {\tt basic} theorem, 101 - \item {\tt basic_defs}, \bold{118} - \item {\tt best_tac}, \bold{106} - \item {\tt beta} theorem, 38, 39 - \item {\tt Bex} constant, 24, 28, 67, 69 - \item {\tt bex_cong} theorem, 31, 32 - \item {\tt Bex_def} theorem, 29, 70 - \item {\tt bexCI} theorem, 32, 69, 71 - \item {\tt bexE} theorem, 32, 71 - \item {\tt bexI} theorem, 32, 69, 71 - \item {\tt bij} constant, 44 - \item {\tt bij_converse_bij} theorem, 44 - \item {\tt bij_def} theorem, 44 - \item {\tt bij_disjoint_Un} theorem, 44 - \item {\tt Blast_tac}, 53--55 - \item {\tt blast_tac}, 17, 19, 20 - \item {\tt bnd_mono_def} theorem, 43 - \item {\tt Bool} theory, 39 - \item {\tt bool} type, 60 - \item {\tt bool_0I} theorem, 41 - \item {\tt bool_1I} theorem, 41 - \item {\tt bool_def} theorem, 41 - \item {\tt boolE} theorem, 41 - \item {\tt box_equals} theorem, 64, 66 - \item {\tt bspec} theorem, 32, 71 + \item {\tt Ball} constant, 25, 29, 68, 70 + \item {\tt ball_cong} theorem, 32, 33 + \item {\tt Ball_def} theorem, 30, 71 + \item {\tt ballE} theorem, 32, 33, 72 + \item {\tt ballI} theorem, 33, 72 + \item {\tt basic} theorem, 102 + \item {\tt basic_defs}, \bold{119} + \item {\tt best_tac}, \bold{107} + \item {\tt beta} theorem, 39, 40 + \item {\tt Bex} constant, 25, 29, 68, 70 + \item {\tt bex_cong} theorem, 32, 33 + \item {\tt Bex_def} theorem, 30, 71 + \item {\tt bexCI} theorem, 33, 70, 72 + \item {\tt bexE} theorem, 33, 72 + \item {\tt bexI} theorem, 33, 70, 72 + \item {\tt bij} constant, 45 + \item {\tt bij_converse_bij} theorem, 45 + \item {\tt bij_def} theorem, 45 + \item {\tt bij_disjoint_Un} theorem, 45 + \item {\tt Blast_tac}, 54--56 + \item {\tt blast_tac}, 18, 20, 21 + \item {\tt bnd_mono_def} theorem, 44 + \item {\tt Bool} theory, 40 + \item {\tt bool} type, 61 + \item {\tt bool_0I} theorem, 42 + \item {\tt bool_1I} theorem, 42 + \item {\tt bool_def} theorem, 42 + \item {\tt boolE} theorem, 42 + \item {\tt box_equals} theorem, 65, 67 + \item {\tt bspec} theorem, 33, 72 \indexspace - \item {\tt case} constant, 42 - \item {\tt case} symbol, 62, 78, 79, 85 - \item {\tt case_def} theorem, 42 - \item {\tt case_Inl} theorem, 42 - \item {\tt case_Inr} theorem, 42 - \item {\tt case_tac}, \bold{66} + \item {\tt case} constant, 43 + \item {\tt case} symbol, 63, 79, 80, 86 + \item {\tt case_def} theorem, 43 + \item {\tt case_Inl} theorem, 43 + \item {\tt case_Inr} theorem, 43 + \item {\tt case_tac}, \bold{67} \item {\tt CCL} theory, 1 - \item {\tt ccontr} theorem, 65 - \item {\tt classical} theorem, 65 - \item {\tt coinduct} theorem, 43 - \item {\tt coinductive}, 90--94 - \item {\tt Collect} constant, 24, 25, 28, 67, 69 - \item {\tt Collect_def} theorem, 29 - \item {\tt Collect_mem_eq} theorem, 69, 70 - \item {\tt Collect_subset} theorem, 35 - \item {\tt CollectD} theorem, 71, 96 - \item {\tt CollectD1} theorem, 31, 33 - \item {\tt CollectD2} theorem, 31, 33 - \item {\tt CollectE} theorem, 31, 33, 71 - \item {\tt CollectI} theorem, 33, 71, 97 - \item {\tt comp_assoc} theorem, 44 - \item {\tt comp_bij} theorem, 44 - \item {\tt comp_def} theorem, 44 - \item {\tt comp_func} theorem, 44 - \item {\tt comp_func_apply} theorem, 44 - \item {\tt comp_inj} theorem, 44 - \item {\tt comp_rls}, \bold{118} - \item {\tt comp_surj} theorem, 44 - \item {\tt comp_type} theorem, 44 - \item {\tt Compl} constant, 67 - \item {\tt Compl_def} theorem, 70 - \item {\tt Compl_disjoint} theorem, 73 - \item {\tt Compl_Int} theorem, 73 - \item {\tt Compl_partition} theorem, 73 - \item {\tt Compl_Un} theorem, 73 - \item {\tt ComplD} theorem, 72 - \item {\tt ComplI} theorem, 72 - \item {\tt concat} constant, 80 - \item {\tt cond_0} theorem, 41 - \item {\tt cond_1} theorem, 41 - \item {\tt cond_def} theorem, 41 - \item {\tt cong} theorem, 64 - \item congruence rules, 31 - \item {\tt conj_cong}, 5, 74 - \item {\tt conj_impE} theorem, 8, 9 - \item {\tt conjE} theorem, 8, 64 - \item {\tt conjI} theorem, 7, 64 - \item {\tt conjL} theorem, 101 - \item {\tt conjR} theorem, 101 - \item {\tt conjunct1} theorem, 7, 64 - \item {\tt conjunct2} theorem, 7, 64 - \item {\tt conL} theorem, 102 - \item {\tt conR} theorem, 102 - \item {\tt cons} constant, 24, 25 - \item {\tt cons_def} theorem, 30 - \item {\tt Cons_iff} theorem, 48 - \item {\tt consCI} theorem, 34 - \item {\tt consE} theorem, 34 - \item {\tt ConsI} theorem, 48 - \item {\tt consI1} theorem, 34 - \item {\tt consI2} theorem, 34 - \item Constructive Type Theory, 110--132 - \item {\tt contr} constant, 111 - \item {\tt converse} constant, 24, 38 - \item {\tt converse_def} theorem, 30 - \item {\tt could_res}, \bold{103} - \item {\tt could_resolve_seq}, \bold{104} - \item {\tt CTT} theory, 1, 110 + \item {\tt ccontr} theorem, 66 + \item {\tt classical} theorem, 66 + \item {\tt coinduct} theorem, 44 + \item {\tt coinductive}, 91--95 + \item {\tt Collect} constant, 25, 26, 29, 68, 70 + \item {\tt Collect_def} theorem, 30 + \item {\tt Collect_mem_eq} theorem, 70, 71 + \item {\tt Collect_subset} theorem, 36 + \item {\tt CollectD} theorem, 72, 97 + \item {\tt CollectD1} theorem, 32, 34 + \item {\tt CollectD2} theorem, 32, 34 + \item {\tt CollectE} theorem, 32, 34, 72 + \item {\tt CollectI} theorem, 34, 72, 98 + \item {\tt comp_assoc} theorem, 45 + \item {\tt comp_bij} theorem, 45 + \item {\tt comp_def} theorem, 45 + \item {\tt comp_func} theorem, 45 + \item {\tt comp_func_apply} theorem, 45 + \item {\tt comp_inj} theorem, 45 + \item {\tt comp_rls}, \bold{119} + \item {\tt comp_surj} theorem, 45 + \item {\tt comp_type} theorem, 45 + \item {\tt Compl} constant, 68 + \item {\tt Compl_def} theorem, 71 + \item {\tt Compl_disjoint} theorem, 74 + \item {\tt Compl_Int} theorem, 74 + \item {\tt Compl_partition} theorem, 74 + \item {\tt Compl_Un} theorem, 74 + \item {\tt ComplD} theorem, 73 + \item {\tt ComplI} theorem, 73 + \item {\tt concat} constant, 81 + \item {\tt cond_0} theorem, 42 + \item {\tt cond_1} theorem, 42 + \item {\tt cond_def} theorem, 42 + \item {\tt cong} theorem, 65 + \item congruence rules, 32 + \item {\tt conj_cong}, 6, 75 + \item {\tt conj_impE} theorem, 9, 10 + \item {\tt conjE} theorem, 9, 65 + \item {\tt conjI} theorem, 8, 65 + \item {\tt conjL} theorem, 102 + \item {\tt conjR} theorem, 102 + \item {\tt conjunct1} theorem, 8, 65 + \item {\tt conjunct2} theorem, 8, 65 + \item {\tt conL} theorem, 103 + \item {\tt conR} theorem, 103 + \item {\tt cons} constant, 25, 26 + \item {\tt cons_def} theorem, 31 + \item {\tt Cons_iff} theorem, 49 + \item {\tt consCI} theorem, 35 + \item {\tt consE} theorem, 35 + \item {\tt ConsI} theorem, 49 + \item {\tt consI1} theorem, 35 + \item {\tt consI2} theorem, 35 + \item Constructive Type Theory, 111--133 + \item {\tt contr} constant, 112 + \item {\tt converse} constant, 25, 39 + \item {\tt converse_def} theorem, 31 + \item {\tt could_res}, \bold{104} + \item {\tt could_resolve_seq}, \bold{105} + \item {\tt CTT} theory, 1, 111 \item {\tt Cube} theory, 1 - \item {\tt cut} theorem, 101 - \item {\tt cut_facts_tac}, 17, 18, 55 - \item {\tt cutL_tac}, \bold{103} - \item {\tt cutR_tac}, \bold{103} + \item {\tt cut} theorem, 102 + \item {\tt cut_facts_tac}, 18, 19, 56 + \item {\tt cutL_tac}, \bold{104} + \item {\tt cutR_tac}, \bold{104} \indexspace - \item {\tt datatype}, 84--90 - \item {\tt deepen_tac}, 15 - \item {\tt diff_0_eq_0} theorem, 122 - \item {\tt Diff_cancel} theorem, 40 - \item {\tt Diff_contains} theorem, 35 - \item {\tt Diff_def} theorem, 29 - \item {\tt diff_def} theorem, 46, 122 - \item {\tt Diff_disjoint} theorem, 40 - \item {\tt Diff_Int} theorem, 40 - \item {\tt Diff_partition} theorem, 40 - \item {\tt diff_self_eq_0} theorem, 122 - \item {\tt Diff_subset} theorem, 35 - \item {\tt diff_succ_succ} theorem, 122 - \item {\tt diff_typing} theorem, 122 - \item {\tt Diff_Un} theorem, 40 - \item {\tt diffC0} theorem, 122 - \item {\tt DiffD1} theorem, 34 - \item {\tt DiffD2} theorem, 34 - \item {\tt DiffE} theorem, 34 - \item {\tt DiffI} theorem, 34 - \item {\tt disj_impE} theorem, 8, 9, 13 - \item {\tt disjCI} theorem, 10, 65 - \item {\tt disjE} theorem, 7, 64 - \item {\tt disjI1} theorem, 7, 64 - \item {\tt disjI2} theorem, 7, 64 - \item {\tt disjL} theorem, 101 - \item {\tt disjR} theorem, 101 - \item {\tt div} symbol, 46, 77, 122 - \item {\tt div_def} theorem, 46, 122 - \item {\tt div_geq} theorem, 78 - \item {\tt div_less} theorem, 78 - \item {\tt domain} constant, 24, 38 - \item {\tt domain_def} theorem, 30 - \item {\tt domain_of_fun} theorem, 38 - \item {\tt domain_subset} theorem, 37 - \item {\tt domain_type} theorem, 38 - \item {\tt domainE} theorem, 37, 38 - \item {\tt domainI} theorem, 37, 38 - \item {\tt double_complement} theorem, 40, 73 - \item {\tt dresolve_tac}, 52 - \item {\tt drop} constant, 80 - \item {\tt dropWhile} constant, 80 + \item {\tt datatype}, 85--91 + \item {\tt deepen_tac}, 16 + \item {\tt diff_0_eq_0} theorem, 123 + \item {\tt Diff_cancel} theorem, 41 + \item {\tt Diff_contains} theorem, 36 + \item {\tt Diff_def} theorem, 30 + \item {\tt diff_def} theorem, 47, 123 + \item {\tt Diff_disjoint} theorem, 41 + \item {\tt Diff_Int} theorem, 41 + \item {\tt Diff_partition} theorem, 41 + \item {\tt diff_self_eq_0} theorem, 123 + \item {\tt Diff_subset} theorem, 36 + \item {\tt diff_succ_succ} theorem, 123 + \item {\tt diff_typing} theorem, 123 + \item {\tt Diff_Un} theorem, 41 + \item {\tt diffC0} theorem, 123 + \item {\tt DiffD1} theorem, 35 + \item {\tt DiffD2} theorem, 35 + \item {\tt DiffE} theorem, 35 + \item {\tt DiffI} theorem, 35 + \item {\tt disj_impE} theorem, 9, 10, 14 + \item {\tt disjCI} theorem, 11, 66 + \item {\tt disjE} theorem, 8, 65 + \item {\tt disjI1} theorem, 8, 65 + \item {\tt disjI2} theorem, 8, 65 + \item {\tt disjL} theorem, 102 + \item {\tt disjR} theorem, 102 + \item {\tt div} symbol, 47, 78, 123 + \item {\tt div_def} theorem, 47, 123 + \item {\tt div_geq} theorem, 79 + \item {\tt div_less} theorem, 79 + \item {\tt domain} constant, 25, 39 + \item {\tt domain_def} theorem, 31 + \item {\tt domain_of_fun} theorem, 39 + \item {\tt domain_subset} theorem, 38 + \item {\tt domain_type} theorem, 39 + \item {\tt domainE} theorem, 38, 39 + \item {\tt domainI} theorem, 38, 39 + \item {\tt double_complement} theorem, 41, 74 + \item {\tt dresolve_tac}, 53 + \item {\tt drop} constant, 81 + \item {\tt dropWhile} constant, 81 \indexspace - \item {\tt Elem} constant, 111 - \item {\tt elim_rls}, \bold{118} - \item {\tt elimL_rls}, \bold{118} - \item {\tt empty_def} theorem, 70 - \item {\tt empty_pack}, \bold{104} - \item {\tt empty_subsetI} theorem, 32 - \item {\tt emptyE} theorem, 32, 72 - \item {\tt Eps} constant, 59, 61 - \item {\tt Eq} constant, 111 - \item {\tt eq} constant, 111, 116 - \item {\tt eq_mp_tac}, \bold{9} - \item {\tt EqC} theorem, 117 - \item {\tt EqE} theorem, 117 - \item {\tt Eqelem} constant, 111 - \item {\tt EqF} theorem, 117 - \item {\tt EqFL} theorem, 117 - \item {\tt EqI} theorem, 117 - \item {\tt Eqtype} constant, 111 - \item {\tt equal_tac}, \bold{119} - \item {\tt equal_types} theorem, 114 - \item {\tt equal_typesL} theorem, 114 - \item {\tt equalityCE} theorem, 69, 71, 96, 97 - \item {\tt equalityD1} theorem, 32, 71 - \item {\tt equalityD2} theorem, 32, 71 - \item {\tt equalityE} theorem, 32, 71 - \item {\tt equalityI} theorem, 32, 51, 71 - \item {\tt equals0D} theorem, 32 - \item {\tt equals0I} theorem, 32 - \item {\tt eresolve_tac}, 15 - \item {\tt eta} theorem, 38, 39 - \item {\tt EX} symbol, 6, 25, 59, 61, 68, 69, 99 - \item {\tt Ex} constant, 6, 59, 99 - \item {\tt EX!} symbol, 6, 59 - \item {\tt Ex1} constant, 6, 59 - \item {\tt Ex1_def} theorem, 63 - \item {\tt ex1_def} theorem, 7 - \item {\tt ex1E} theorem, 8, 65 - \item {\tt ex1I} theorem, 8, 65 - \item {\tt Ex_def} theorem, 63 - \item {\tt ex_impE} theorem, 8 - \item {\tt exCI} theorem, 10, 14, 65 - \item {\tt excluded_middle} theorem, 10, 65 - \item {\tt exE} theorem, 7, 65 - \item {\tt exI} theorem, 7, 65 - \item {\tt exL} theorem, 101 - \item {\tt Exp} theory, 95 - \item {\tt expand_if} theorem, 65 - \item {\tt expand_split} theorem, 75 - \item {\tt expand_sum_case} theorem, 77 - \item {\tt exR} theorem, 101, 104, 106 - \item {\tt exR_thin} theorem, 102, 106, 107 - \item {\tt ext} theorem, 62, 63 - \item {\tt extension} theorem, 29 + \item {\tt Elem} constant, 112 + \item {\tt elim_rls}, \bold{119} + \item {\tt elimL_rls}, \bold{119} + \item {\tt empty_def} theorem, 71 + \item {\tt empty_pack}, \bold{105} + \item {\tt empty_subsetI} theorem, 33 + \item {\tt emptyE} theorem, 33, 73 + \item {\tt Eps} constant, 60, 62 + \item {\tt Eq} constant, 112 + \item {\tt eq} constant, 112, 117 + \item {\tt eq_mp_tac}, \bold{10} + \item {\tt EqC} theorem, 118 + \item {\tt EqE} theorem, 118 + \item {\tt Eqelem} constant, 112 + \item {\tt EqF} theorem, 118 + \item {\tt EqFL} theorem, 118 + \item {\tt EqI} theorem, 118 + \item {\tt Eqtype} constant, 112 + \item {\tt equal_tac}, \bold{120} + \item {\tt equal_types} theorem, 115 + \item {\tt equal_typesL} theorem, 115 + \item {\tt equalityCE} theorem, 70, 72, 97, 98 + \item {\tt equalityD1} theorem, 33, 72 + \item {\tt equalityD2} theorem, 33, 72 + \item {\tt equalityE} theorem, 33, 72 + \item {\tt equalityI} theorem, 33, 52, 72 + \item {\tt equals0D} theorem, 33 + \item {\tt equals0I} theorem, 33 + \item {\tt eresolve_tac}, 16 + \item {\tt eta} theorem, 39, 40 + \item {\tt EX} symbol, 7, 26, 60, 62, 69, 70, 100 + \item {\tt Ex} constant, 7, 60, 100 + \item {\tt EX!} symbol, 7, 60 + \item {\tt Ex1} constant, 7, 60 + \item {\tt Ex1_def} theorem, 64 + \item {\tt ex1_def} theorem, 8 + \item {\tt ex1E} theorem, 9, 66 + \item {\tt ex1I} theorem, 9, 66 + \item {\tt Ex_def} theorem, 64 + \item {\tt ex_impE} theorem, 9 + \item {\tt exCI} theorem, 11, 15, 66 + \item {\tt excluded_middle} theorem, 11, 66 + \item {\tt exE} theorem, 8, 66 + \item {\tt exI} theorem, 8, 66 + \item {\tt exL} theorem, 102 + \item {\tt Exp} theory, 96 + \item {\tt expand_if} theorem, 66 + \item {\tt expand_split} theorem, 76 + \item {\tt expand_sum_case} theorem, 78 + \item {\tt exR} theorem, 102, 105, 107 + \item {\tt exR_thin} theorem, 103, 107, 108 + \item {\tt ext} theorem, 63, 64 + \item {\tt extension} theorem, 30 \indexspace - \item {\tt F} constant, 111 - \item {\tt False} constant, 6, 59, 99 - \item {\tt False_def} theorem, 63 - \item {\tt FalseE} theorem, 7, 64 - \item {\tt FalseL} theorem, 101 - \item {\tt fast_tac}, \bold{106} - \item {\tt FE} theorem, 117, 121 - \item {\tt FEL} theorem, 117 - \item {\tt FF} theorem, 117 - \item {\tt field} constant, 24 - \item {\tt field_def} theorem, 30 - \item {\tt field_subset} theorem, 37 - \item {\tt fieldCI} theorem, 37 - \item {\tt fieldE} theorem, 37 - \item {\tt fieldI1} theorem, 37 - \item {\tt fieldI2} theorem, 37 - \item {\tt filseq_resolve_tac}, \bold{104} - \item {\tt filt_resolve_tac}, 104, 119 - \item {\tt filter} constant, 80 - \item {\tt Fin.consI} theorem, 47 - \item {\tt Fin.emptyI} theorem, 47 - \item {\tt Fin_induct} theorem, 47 - \item {\tt Fin_mono} theorem, 47 - \item {\tt Fin_subset} theorem, 47 - \item {\tt Fin_UnI} theorem, 47 - \item {\tt Fin_UnionI} theorem, 47 - \item first-order logic, 4--21 - \item {\tt Fixedpt} theory, 41 - \item {\tt flat} constant, 48 - \item {\tt flat_def} theorem, 48 - \item flex-flex constraints, 98 - \item {\tt FOL} theory, 1, 4, 10, 120 - \item {\tt FOL_cs}, \bold{10} - \item {\tt FOL_ss}, \bold{5} - \item {\tt foldl} constant, 80 - \item {\tt form_rls}, \bold{118} - \item {\tt formL_rls}, \bold{118} - \item {\tt forms_of_seq}, \bold{103} - \item {\tt foundation} theorem, 29 - \item {\tt fst} constant, 24, 28, 75, 111, 116 - \item {\tt fst_conv} theorem, 36, 75 - \item {\tt fst_def} theorem, 30, 116 - \item {\tt Fun} theory, 74 - \item {\tt fun} type, 60 - \item {\tt fun_cong} theorem, 64 - \item {\tt fun_disjoint_apply1} theorem, 39, 55 - \item {\tt fun_disjoint_apply2} theorem, 39 - \item {\tt fun_disjoint_Un} theorem, 39, 57 - \item {\tt fun_empty} theorem, 39 - \item {\tt fun_extension} theorem, 38, 39 - \item {\tt fun_is_rel} theorem, 38 - \item {\tt fun_single} theorem, 39 + \item {\tt F} constant, 112 + \item {\tt False} constant, 7, 60, 100 + \item {\tt False_def} theorem, 64 + \item {\tt FalseE} theorem, 8, 65 + \item {\tt FalseL} theorem, 102 + \item {\tt fast_tac}, \bold{107} + \item {\tt FE} theorem, 118, 122 + \item {\tt FEL} theorem, 118 + \item {\tt FF} theorem, 118 + \item {\tt field} constant, 25 + \item {\tt field_def} theorem, 31 + \item {\tt field_subset} theorem, 38 + \item {\tt fieldCI} theorem, 38 + \item {\tt fieldE} theorem, 38 + \item {\tt fieldI1} theorem, 38 + \item {\tt fieldI2} theorem, 38 + \item {\tt filseq_resolve_tac}, \bold{105} + \item {\tt filt_resolve_tac}, 105, 120 + \item {\tt filter} constant, 81 + \item {\tt Fin.consI} theorem, 48 + \item {\tt Fin.emptyI} theorem, 48 + \item {\tt Fin_induct} theorem, 48 + \item {\tt Fin_mono} theorem, 48 + \item {\tt Fin_subset} theorem, 48 + \item {\tt Fin_UnI} theorem, 48 + \item {\tt Fin_UnionI} theorem, 48 + \item first-order logic, 5--22 + \item {\tt Fixedpt} theory, 42 + \item {\tt flat} constant, 49 + \item {\tt flat_def} theorem, 49 + \item flex-flex constraints, 99 + \item {\tt FOL} theory, 1, 5, 11, 121 + \item {\tt FOL_cs}, \bold{11} + \item {\tt FOL_ss}, \bold{6} + \item {\tt foldl} constant, 81 + \item {\tt form_rls}, \bold{119} + \item {\tt formL_rls}, \bold{119} + \item {\tt forms_of_seq}, \bold{104} + \item {\tt foundation} theorem, 30 + \item {\tt fst} constant, 25, 29, 76, 112, 117 + \item {\tt fst_conv} theorem, 37, 76 + \item {\tt fst_def} theorem, 31, 117 + \item {\tt Fun} theory, 75 + \item {\tt fun} type, 61 + \item {\tt fun_cong} theorem, 65 + \item {\tt fun_disjoint_apply1} theorem, 40, 56 + \item {\tt fun_disjoint_apply2} theorem, 40 + \item {\tt fun_disjoint_Un} theorem, 40, 58 + \item {\tt fun_empty} theorem, 40 + \item {\tt fun_extension} theorem, 39, 40 + \item {\tt fun_is_rel} theorem, 39 + \item {\tt fun_single} theorem, 40 \item function applications - \subitem in \CTT, 113 - \subitem in \ZF, 24 + \subitem in \CTT, 114 + \subitem in \ZF, 25 \indexspace - \item {\tt gfp_def} theorem, 43 - \item {\tt gfp_least} theorem, 43 - \item {\tt gfp_mono} theorem, 43 - \item {\tt gfp_subset} theorem, 43 - \item {\tt gfp_Tarski} theorem, 43 - \item {\tt gfp_upperbound} theorem, 43 - \item {\tt goalw}, 17 + \item {\tt gfp_def} theorem, 44 + \item {\tt gfp_least} theorem, 44 + \item {\tt gfp_mono} theorem, 44 + \item {\tt gfp_subset} theorem, 44 + \item {\tt gfp_Tarski} theorem, 44 + \item {\tt gfp_upperbound} theorem, 44 + \item {\tt goalw}, 18 \indexspace - \item {\tt hd} constant, 80 - \item higher-order logic, 58--97 - \item {\tt HOL} theory, 1, 58 - \item {\sc hol} system, 58, 61 - \item {\tt HOL_basic_ss}, \bold{74} - \item {\tt HOL_cs}, \bold{75} - \item {\tt HOL_quantifiers}, \bold{61}, 69 - \item {\tt HOL_ss}, \bold{74} + \item {\tt hd} constant, 81 + \item higher-order logic, 59--98 + \item {\tt HOL} theory, 1, 59 + \item {\sc hol} system, 59, 62 + \item {\tt HOL_basic_ss}, \bold{75} + \item {\tt HOL_cs}, \bold{76} + \item {\tt HOL_quantifiers}, \bold{62}, 70 + \item {\tt HOL_ss}, \bold{75} \item {\tt HOLCF} theory, 1 - \item {\tt hyp_rew_tac}, \bold{120} - \item {\tt hyp_subst_tac}, 5, 74 + \item {\tt hyp_rew_tac}, \bold{121} + \item {\tt hyp_subst_tac}, 6, 75 \indexspace - \item {\tt i} type, 23, 110 - \item {\tt id} constant, 44 - \item {\tt id_def} theorem, 44 - \item {\tt If} constant, 59 - \item {\tt if} constant, 24 - \item {\tt if_def} theorem, 16, 29, 63 - \item {\tt if_not_P} theorem, 34, 65 - \item {\tt if_P} theorem, 34, 65 - \item {\tt ifE} theorem, 18 - \item {\tt iff} theorem, 62, 63 - \item {\tt iff_def} theorem, 7, 101 - \item {\tt iff_impE} theorem, 8 - \item {\tt iffCE} theorem, 10, 65, 69 - \item {\tt iffD1} theorem, 8, 64 - \item {\tt iffD2} theorem, 8, 64 - \item {\tt iffE} theorem, 8, 64 - \item {\tt iffI} theorem, 8, 18, 64 - \item {\tt iffL} theorem, 102, 108 - \item {\tt iffR} theorem, 102 - \item {\tt ifI} theorem, 18 - \item {\tt IFOL} theory, 4 - \item {\tt IFOL_ss}, \bold{5} - \item {\tt image_def} theorem, 30, 70 - \item {\tt imageE} theorem, 37, 72 - \item {\tt imageI} theorem, 37, 72 - \item {\tt imp_impE} theorem, 8, 13 - \item {\tt impCE} theorem, 10, 65 - \item {\tt impE} theorem, 8, 9, 64 - \item {\tt impI} theorem, 7, 62 - \item {\tt impL} theorem, 101 - \item {\tt impR} theorem, 101 - \item {\tt in} symbol, 26, 60 - \item {\tt ind} type, 78 - \item {\tt induct} theorem, 43 - \item {\tt induct_tac}, 79, \bold{85} - \item {\tt inductive}, 90--94 - \item {\tt Inf} constant, 24, 28 - \item {\tt infinity} theorem, 30 - \item {\tt inj} constant, 44, 74 - \item {\tt inj_converse_inj} theorem, 44 - \item {\tt inj_def} theorem, 44, 74 - \item {\tt inj_Inl} theorem, 77 - \item {\tt inj_Inr} theorem, 77 - \item {\tt inj_onto} constant, 74 - \item {\tt inj_onto_def} theorem, 74 - \item {\tt inj_Suc} theorem, 77 - \item {\tt Inl} constant, 42, 77 - \item {\tt inl} constant, 111, 116, 126 - \item {\tt Inl_def} theorem, 42 - \item {\tt Inl_inject} theorem, 42 - \item {\tt Inl_neq_Inr} theorem, 42 - \item {\tt Inl_not_Inr} theorem, 77 - \item {\tt Inr} constant, 42, 77 - \item {\tt inr} constant, 111, 116 - \item {\tt Inr_def} theorem, 42 - \item {\tt Inr_inject} theorem, 42 - \item {\tt insert} constant, 67 - \item {\tt insert_def} theorem, 70 - \item {\tt insertE} theorem, 72 - \item {\tt insertI1} theorem, 72 - \item {\tt insertI2} theorem, 72 - \item {\tt INT} symbol, 25, 27, 67--69 - \item {\tt Int} symbol, 24, 67 - \item {\tt Int_absorb} theorem, 40, 73 - \item {\tt Int_assoc} theorem, 40, 73 - \item {\tt Int_commute} theorem, 40, 73 - \item {\tt INT_D} theorem, 72 - \item {\tt Int_def} theorem, 29, 70 - \item {\tt INT_E} theorem, 33, 72 - \item {\tt Int_greatest} theorem, 35, 51, 53, 73 - \item {\tt INT_I} theorem, 33, 72 - \item {\tt Int_Inter_image} theorem, 73 - \item {\tt Int_lower1} theorem, 35, 52, 73 - \item {\tt Int_lower2} theorem, 35, 52, 73 - \item {\tt Int_Un_distrib} theorem, 40, 73 - \item {\tt Int_Union} theorem, 73 - \item {\tt Int_Union_RepFun} theorem, 40 - \item {\tt IntD1} theorem, 34, 72 - \item {\tt IntD2} theorem, 34, 72 - \item {\tt IntE} theorem, 34, 52, 72 - \item {\tt INTER} constant, 67 - \item {\tt Inter} constant, 24, 67 - \item {\tt INTER1} constant, 67 - \item {\tt INTER1_def} theorem, 70 - \item {\tt INTER_def} theorem, 70 - \item {\tt Inter_def} theorem, 29, 70 - \item {\tt Inter_greatest} theorem, 35, 73 - \item {\tt Inter_lower} theorem, 35, 73 - \item {\tt Inter_Un_distrib} theorem, 40, 73 - \item {\tt InterD} theorem, 33, 72 - \item {\tt InterE} theorem, 33, 72 - \item {\tt InterI} theorem, 31, 33, 72 - \item {\tt IntI} theorem, 34, 72 - \item {\tt IntPr.best_tac}, \bold{10} - \item {\tt IntPr.fast_tac}, \bold{9}, 12 - \item {\tt IntPr.inst_step_tac}, \bold{9} - \item {\tt IntPr.safe_step_tac}, \bold{9} - \item {\tt IntPr.safe_tac}, \bold{9} - \item {\tt IntPr.step_tac}, \bold{9} - \item {\tt intr_rls}, \bold{118} - \item {\tt intr_tac}, \bold{119}, 128, 129 - \item {\tt intrL_rls}, \bold{118} - \item {\tt inv} constant, 74 - \item {\tt inv_def} theorem, 74 + \item {\tt i} type, 24, 111 + \item {\tt id} constant, 45 + \item {\tt id_def} theorem, 45 + \item {\tt If} constant, 60 + \item {\tt if} constant, 25 + \item {\tt if_def} theorem, 17, 30, 64 + \item {\tt if_not_P} theorem, 35, 66 + \item {\tt if_P} theorem, 35, 66 + \item {\tt ifE} theorem, 19 + \item {\tt iff} theorem, 63, 64 + \item {\tt iff_def} theorem, 8, 102 + \item {\tt iff_impE} theorem, 9 + \item {\tt iffCE} theorem, 11, 66, 70 + \item {\tt iffD1} theorem, 9, 65 + \item {\tt iffD2} theorem, 9, 65 + \item {\tt iffE} theorem, 9, 65 + \item {\tt iffI} theorem, 9, 19, 65 + \item {\tt iffL} theorem, 103, 109 + \item {\tt iffR} theorem, 103 + \item {\tt ifI} theorem, 19 + \item {\tt IFOL} theory, 5 + \item {\tt IFOL_ss}, \bold{6} + \item {\tt image_def} theorem, 31, 71 + \item {\tt imageE} theorem, 38, 73 + \item {\tt imageI} theorem, 38, 73 + \item {\tt imp_impE} theorem, 9, 14 + \item {\tt impCE} theorem, 11, 66 + \item {\tt impE} theorem, 9, 10, 65 + \item {\tt impI} theorem, 8, 63 + \item {\tt impL} theorem, 102 + \item {\tt impR} theorem, 102 + \item {\tt in} symbol, 27, 61 + \item {\tt ind} type, 79 + \item {\tt induct} theorem, 44 + \item {\tt induct_tac}, 80, \bold{86} + \item {\tt inductive}, 91--95 + \item {\tt Inf} constant, 25, 29 + \item {\tt infinity} theorem, 31 + \item {\tt inj} constant, 45, 75 + \item {\tt inj_converse_inj} theorem, 45 + \item {\tt inj_def} theorem, 45, 75 + \item {\tt inj_Inl} theorem, 78 + \item {\tt inj_Inr} theorem, 78 + \item {\tt inj_onto} constant, 75 + \item {\tt inj_onto_def} theorem, 75 + \item {\tt inj_Suc} theorem, 78 + \item {\tt Inl} constant, 43, 78 + \item {\tt inl} constant, 112, 117, 127 + \item {\tt Inl_def} theorem, 43 + \item {\tt Inl_inject} theorem, 43 + \item {\tt Inl_neq_Inr} theorem, 43 + \item {\tt Inl_not_Inr} theorem, 78 + \item {\tt Inr} constant, 43, 78 + \item {\tt inr} constant, 112, 117 + \item {\tt Inr_def} theorem, 43 + \item {\tt Inr_inject} theorem, 43 + \item {\tt insert} constant, 68 + \item {\tt insert_def} theorem, 71 + \item {\tt insertE} theorem, 73 + \item {\tt insertI1} theorem, 73 + \item {\tt insertI2} theorem, 73 + \item {\tt INT} symbol, 26, 28, 68--70 + \item {\tt Int} symbol, 25, 68 + \item {\tt Int_absorb} theorem, 41, 74 + \item {\tt Int_assoc} theorem, 41, 74 + \item {\tt Int_commute} theorem, 41, 74 + \item {\tt INT_D} theorem, 73 + \item {\tt Int_def} theorem, 30, 71 + \item {\tt INT_E} theorem, 34, 73 + \item {\tt Int_greatest} theorem, 36, 52, 54, 74 + \item {\tt INT_I} theorem, 34, 73 + \item {\tt Int_Inter_image} theorem, 74 + \item {\tt Int_lower1} theorem, 36, 53, 74 + \item {\tt Int_lower2} theorem, 36, 53, 74 + \item {\tt Int_Un_distrib} theorem, 41, 74 + \item {\tt Int_Union} theorem, 74 + \item {\tt Int_Union_RepFun} theorem, 41 + \item {\tt IntD1} theorem, 35, 73 + \item {\tt IntD2} theorem, 35, 73 + \item {\tt IntE} theorem, 35, 53, 73 + \item {\tt INTER} constant, 68 + \item {\tt Inter} constant, 25, 68 + \item {\tt INTER1} constant, 68 + \item {\tt INTER1_def} theorem, 71 + \item {\tt INTER_def} theorem, 71 + \item {\tt Inter_def} theorem, 30, 71 + \item {\tt Inter_greatest} theorem, 36, 74 + \item {\tt Inter_lower} theorem, 36, 74 + \item {\tt Inter_Un_distrib} theorem, 41, 74 + \item {\tt InterD} theorem, 34, 73 + \item {\tt InterE} theorem, 34, 73 + \item {\tt InterI} theorem, 32, 34, 73 + \item {\tt IntI} theorem, 35, 73 + \item {\tt IntPr.best_tac}, \bold{11} + \item {\tt IntPr.fast_tac}, \bold{10}, 13 + \item {\tt IntPr.inst_step_tac}, \bold{10} + \item {\tt IntPr.safe_step_tac}, \bold{10} + \item {\tt IntPr.safe_tac}, \bold{10} + \item {\tt IntPr.step_tac}, \bold{10} + \item {\tt intr_rls}, \bold{119} + \item {\tt intr_tac}, \bold{120}, 129, 130 + \item {\tt intrL_rls}, \bold{119} + \item {\tt inv} constant, 75 + \item {\tt inv_def} theorem, 75 \indexspace - \item {\tt lam} symbol, 25, 27, 113 - \item {\tt lam_def} theorem, 30 - \item {\tt lam_type} theorem, 38 - \item {\tt Lambda} constant, 24, 27 - \item {\tt lambda} constant, 111, 113 + \item {\tt lam} symbol, 26, 28, 114 + \item {\tt lam_def} theorem, 31 + \item {\tt lam_type} theorem, 39 + \item {\tt Lambda} constant, 25, 28 + \item {\tt lambda} constant, 112, 114 \item $\lambda$-abstractions - \subitem in \CTT, 113 - \subitem in \ZF, 25 - \item {\tt lamE} theorem, 38, 39 - \item {\tt lamI} theorem, 38, 39 + \subitem in \CTT, 114 + \subitem in \ZF, 26 + \item {\tt lamE} theorem, 39, 40 + \item {\tt lamI} theorem, 39, 40 \item {\tt LCF} theory, 1 - \item {\tt le_cs}, \bold{22} - \item {\tt LEAST} constant, 60, 61, 78 - \item {\tt Least} constant, 59 - \item {\tt Least_def} theorem, 63 - \item {\tt left_comp_id} theorem, 44 - \item {\tt left_comp_inverse} theorem, 44 - \item {\tt left_inverse} theorem, 44 - \item {\tt length} constant, 48, 80 - \item {\tt length_def} theorem, 48 - \item {\tt less_induct} theorem, 79 - \item {\tt Let} constant, 23, 24, 59, 62 - \item {\tt let} symbol, 26, 60, 62 - \item {\tt Let_def} theorem, 23, 29, 62, 63 - \item {\tt LFilter} theory, 95 - \item {\tt lfp_def} theorem, 43 - \item {\tt lfp_greatest} theorem, 43 - \item {\tt lfp_lowerbound} theorem, 43 - \item {\tt lfp_mono} theorem, 43 - \item {\tt lfp_subset} theorem, 43 - \item {\tt lfp_Tarski} theorem, 43 - \item {\tt List} theory, 79, 80 - \item {\tt list} constant, 48 - \item {\tt list} type, 79, 94 - \item {\tt List.induct} theorem, 48 - \item {\tt list_case} constant, 48 - \item {\tt list_mono} theorem, 48 - \item {\tt list_rec} constant, 48 - \item {\tt list_rec_Cons} theorem, 48 - \item {\tt list_rec_def} theorem, 48 - \item {\tt list_rec_Nil} theorem, 48 - \item {\tt LK} theory, 1, 98, 102 - \item {\tt LK_dup_pack}, \bold{104}, 106 - \item {\tt LK_pack}, \bold{104} - \item {\tt LList} theory, 95 - \item {\tt logic} class, 4 + \item {\tt le_cs}, \bold{23} + \item {\tt LEAST} constant, 61, 62, 79 + \item {\tt Least} constant, 60 + \item {\tt Least_def} theorem, 64 + \item {\tt left_comp_id} theorem, 45 + \item {\tt left_comp_inverse} theorem, 45 + \item {\tt left_inverse} theorem, 45 + \item {\tt length} constant, 49, 81 + \item {\tt length_def} theorem, 49 + \item {\tt less_induct} theorem, 80 + \item {\tt Let} constant, 24, 25, 60, 63 + \item {\tt let} symbol, 27, 61, 63 + \item {\tt Let_def} theorem, 24, 30, 63, 64 + \item {\tt LFilter} theory, 96 + \item {\tt lfp_def} theorem, 44 + \item {\tt lfp_greatest} theorem, 44 + \item {\tt lfp_lowerbound} theorem, 44 + \item {\tt lfp_mono} theorem, 44 + \item {\tt lfp_subset} theorem, 44 + \item {\tt lfp_Tarski} theorem, 44 + \item {\tt List} theory, 80, 81 + \item {\tt list} constant, 49 + \item {\tt list} type, 80, 95 + \item {\tt List.induct} theorem, 49 + \item {\tt list_case} constant, 49 + \item {\tt list_mono} theorem, 49 + \item {\tt list_rec} constant, 49 + \item {\tt list_rec_Cons} theorem, 49 + \item {\tt list_rec_def} theorem, 49 + \item {\tt list_rec_Nil} theorem, 49 + \item {\tt LK} theory, 1, 99, 103 + \item {\tt LK_dup_pack}, \bold{105}, 107 + \item {\tt LK_pack}, \bold{105} + \item {\tt LList} theory, 96 + \item {\tt logic} class, 5 \indexspace - \item {\tt map} constant, 48, 80 - \item {\tt map_app_distrib} theorem, 48 - \item {\tt map_compose} theorem, 48 - \item {\tt map_def} theorem, 48 - \item {\tt map_flat} theorem, 48 - \item {\tt map_ident} theorem, 48 - \item {\tt map_type} theorem, 48 - \item {\tt max} constant, 60, 78 - \item {\tt mem} symbol, 80 - \item {\tt mem_asym} theorem, 34, 35 - \item {\tt mem_Collect_eq} theorem, 69, 70 - \item {\tt mem_irrefl} theorem, 34 - \item {\tt min} constant, 60, 78 - \item {\tt minus} class, 60 - \item {\tt mod} symbol, 46, 77, 122 - \item {\tt mod_def} theorem, 46, 122 - \item {\tt mod_geq} theorem, 78 - \item {\tt mod_less} theorem, 78 - \item {\tt mod_quo_equality} theorem, 46 + \item {\tt map} constant, 49, 81 + \item {\tt map_app_distrib} theorem, 49 + \item {\tt map_compose} theorem, 49 + \item {\tt map_def} theorem, 49 + \item {\tt map_flat} theorem, 49 + \item {\tt map_ident} theorem, 49 + \item {\tt map_type} theorem, 49 + \item {\tt max} constant, 61, 79 + \item {\tt mem} symbol, 81 + \item {\tt mem_asym} theorem, 35, 36 + \item {\tt mem_Collect_eq} theorem, 70, 71 + \item {\tt mem_irrefl} theorem, 35 + \item {\tt min} constant, 61, 79 + \item {\tt minus} class, 61 + \item {\tt mod} symbol, 47, 78, 123 + \item {\tt mod_def} theorem, 47, 123 + \item {\tt mod_geq} theorem, 79 + \item {\tt mod_less} theorem, 79 + \item {\tt mod_quo_equality} theorem, 47 \item {\tt Modal} theory, 1 - \item {\tt mono} constant, 60 - \item {\tt mp} theorem, 7, 62 - \item {\tt mp_tac}, \bold{9}, \bold{120} - \item {\tt mult_0} theorem, 46 - \item {\tt mult_assoc} theorem, 46, 122 - \item {\tt mult_commute} theorem, 46, 122 - \item {\tt mult_def} theorem, 46, 122 - \item {\tt mult_succ} theorem, 46 - \item {\tt mult_type} theorem, 46 - \item {\tt mult_typing} theorem, 122 - \item {\tt multC0} theorem, 122 - \item {\tt multC_succ} theorem, 122 + \item {\tt mono} constant, 61 + \item {\tt mp} theorem, 8, 63 + \item {\tt mp_tac}, \bold{10}, \bold{121} + \item {\tt mult_0} theorem, 47 + \item {\tt mult_assoc} theorem, 47, 123 + \item {\tt mult_commute} theorem, 47, 123 + \item {\tt mult_def} theorem, 47, 123 + \item {\tt mult_succ} theorem, 47 + \item {\tt mult_type} theorem, 47 + \item {\tt mult_typing} theorem, 123 + \item {\tt multC0} theorem, 123 + \item {\tt multC_succ} theorem, 123 \indexspace - \item {\tt N} constant, 111 - \item {\tt n_not_Suc_n} theorem, 77 - \item {\tt Nat} theory, 45, 78 - \item {\tt nat} constant, 46 - \item {\tt nat} type, 78 - \item {\tt nat_0I} theorem, 46 - \item {\tt nat_case} constant, 46 - \item {\tt nat_case_0} theorem, 46 - \item {\tt nat_case_def} theorem, 46 - \item {\tt nat_case_succ} theorem, 46 - \item {\tt nat_def} theorem, 46 - \item {\tt nat_induct} theorem, 46, 77 - \item {\tt nat_rec} constant, 79 - \item {\tt nat_succI} theorem, 46 - \item {\tt NatDef} theory, 78 - \item {\tt NC0} theorem, 115 - \item {\tt NC_succ} theorem, 115 - \item {\tt NE} theorem, 114, 115, 123 - \item {\tt NEL} theorem, 115 - \item {\tt NF} theorem, 115, 124 - \item {\tt NI0} theorem, 115 - \item {\tt NI_succ} theorem, 115 - \item {\tt NI_succL} theorem, 115 - \item {\tt Nil_Cons_iff} theorem, 48 - \item {\tt NilI} theorem, 48 - \item {\tt NIO} theorem, 123 - \item {\tt Not} constant, 6, 59, 99 - \item {\tt not_def} theorem, 7, 41, 63 - \item {\tt not_impE} theorem, 8 - \item {\tt not_sym} theorem, 64 - \item {\tt notE} theorem, 8, 9, 64 - \item {\tt notI} theorem, 8, 64 - \item {\tt notL} theorem, 101 - \item {\tt notnotD} theorem, 10, 65 - \item {\tt notR} theorem, 101 - \item {\tt nth} constant, 80 - \item {\tt null} constant, 80 + \item {\tt N} constant, 112 + \item {\tt n_not_Suc_n} theorem, 78 + \item {\tt Nat} theory, 46, 79 + \item {\tt nat} constant, 47 + \item {\tt nat} type, 79 + \item {\tt nat_0I} theorem, 47 + \item {\tt nat_case} constant, 47 + \item {\tt nat_case_0} theorem, 47 + \item {\tt nat_case_def} theorem, 47 + \item {\tt nat_case_succ} theorem, 47 + \item {\tt nat_def} theorem, 47 + \item {\tt nat_induct} theorem, 47, 78 + \item {\tt nat_rec} constant, 80 + \item {\tt nat_succI} theorem, 47 + \item {\tt NatDef} theory, 79 + \item {\tt NC0} theorem, 116 + \item {\tt NC_succ} theorem, 116 + \item {\tt NE} theorem, 115, 116, 124 + \item {\tt NEL} theorem, 116 + \item {\tt NF} theorem, 116, 125 + \item {\tt NI0} theorem, 116 + \item {\tt NI_succ} theorem, 116 + \item {\tt NI_succL} theorem, 116 + \item {\tt Nil_Cons_iff} theorem, 49 + \item {\tt NilI} theorem, 49 + \item {\tt NIO} theorem, 124 + \item {\tt Not} constant, 7, 60, 100 + \item {\tt not_def} theorem, 8, 42, 64 + \item {\tt not_impE} theorem, 9 + \item {\tt not_sym} theorem, 65 + \item {\tt notE} theorem, 9, 10, 65 + \item {\tt notI} theorem, 9, 65 + \item {\tt notL} theorem, 102 + \item {\tt notnotD} theorem, 11, 66 + \item {\tt notR} theorem, 102 + \item {\tt nth} constant, 81 + \item {\tt null} constant, 81 \indexspace - \item {\tt O} symbol, 44 - \item {\tt o} symbol, 59, 70 - \item {\tt o} type, 4, 98 - \item {\tt o_def} theorem, 63 - \item {\tt of} symbol, 62 - \item {\tt or_def} theorem, 41, 63 - \item {\tt Ord} theory, 60 - \item {\tt ord} class, 60, 61, 78 - \item {\tt order} class, 60 + \item {\tt O} symbol, 45 + \item {\tt o} symbol, 60, 71 + \item {\tt o} type, 5, 99 + \item {\tt o_def} theorem, 64 + \item {\tt of} symbol, 63 + \item {\tt or_def} theorem, 42, 64 + \item {\tt Ord} theory, 61 + \item {\tt ord} class, 61, 62, 79 + \item {\tt order} class, 61 \indexspace - \item {\tt pack} ML type, 104 - \item {\tt Pair} constant, 24, 25, 75 - \item {\tt pair} constant, 111 - \item {\tt Pair_def} theorem, 30 - \item {\tt Pair_eq} theorem, 75 - \item {\tt Pair_inject} theorem, 36, 75 - \item {\tt Pair_inject1} theorem, 36 - \item {\tt Pair_inject2} theorem, 36 - \item {\tt Pair_neq_0} theorem, 36 - \item {\tt PairE} theorem, 75 - \item {\tt pairing} theorem, 33 - \item {\tt pc_tac}, \bold{105}, \bold{121}, 127, 128 - \item {\tt Perm} theory, 41 - \item {\tt Pi} constant, 24, 27, 39 - \item {\tt Pi_def} theorem, 30 - \item {\tt Pi_type} theorem, 38, 39 - \item {\tt plus} class, 60 - \item {\tt PlusC_inl} theorem, 117 - \item {\tt PlusC_inr} theorem, 117 - \item {\tt PlusE} theorem, 117, 121, 125 - \item {\tt PlusEL} theorem, 117 - \item {\tt PlusF} theorem, 117 - \item {\tt PlusFL} theorem, 117 - \item {\tt PlusI_inl} theorem, 117, 126 - \item {\tt PlusI_inlL} theorem, 117 - \item {\tt PlusI_inr} theorem, 117 - \item {\tt PlusI_inrL} theorem, 117 - \item {\tt Pow} constant, 24, 67 - \item {\tt Pow_def} theorem, 70 - \item {\tt Pow_iff} theorem, 29 - \item {\tt Pow_mono} theorem, 51 - \item {\tt PowD} theorem, 32, 52, 72 - \item {\tt PowI} theorem, 32, 52, 72 - \item primitive recursion, 89--90 - \item {\tt primrec}, 89--90 - \item {\tt primrec} symbol, 78 - \item {\tt PrimReplace} constant, 24, 28 + \item {\tt pack} ML type, 105 + \item {\tt Pair} constant, 25, 26, 76 + \item {\tt pair} constant, 112 + \item {\tt Pair_def} theorem, 31 + \item {\tt Pair_eq} theorem, 76 + \item {\tt Pair_inject} theorem, 37, 76 + \item {\tt Pair_inject1} theorem, 37 + \item {\tt Pair_inject2} theorem, 37 + \item {\tt Pair_neq_0} theorem, 37 + \item {\tt PairE} theorem, 76 + \item {\tt pairing} theorem, 34 + \item {\tt pc_tac}, \bold{106}, \bold{122}, 128, 129 + \item {\tt Perm} theory, 42 + \item {\tt Pi} constant, 25, 28, 40 + \item {\tt Pi_def} theorem, 31 + \item {\tt Pi_type} theorem, 39, 40 + \item {\tt plus} class, 61 + \item {\tt PlusC_inl} theorem, 118 + \item {\tt PlusC_inr} theorem, 118 + \item {\tt PlusE} theorem, 118, 122, 126 + \item {\tt PlusEL} theorem, 118 + \item {\tt PlusF} theorem, 118 + \item {\tt PlusFL} theorem, 118 + \item {\tt PlusI_inl} theorem, 118, 127 + \item {\tt PlusI_inlL} theorem, 118 + \item {\tt PlusI_inr} theorem, 118 + \item {\tt PlusI_inrL} theorem, 118 + \item {\tt Pow} constant, 25, 68 + \item {\tt Pow_def} theorem, 71 + \item {\tt Pow_iff} theorem, 30 + \item {\tt Pow_mono} theorem, 52 + \item {\tt PowD} theorem, 33, 53, 73 + \item {\tt PowI} theorem, 33, 53, 73 + \item primitive recursion, 90--91 + \item {\tt primrec}, 90--91 + \item {\tt primrec} symbol, 79 + \item {\tt PrimReplace} constant, 25, 29 \item priorities, 2 - \item {\tt PROD} symbol, 25, 27, 112, 113 - \item {\tt Prod} constant, 111 - \item {\tt Prod} theory, 75 - \item {\tt ProdC} theorem, 115, 131 - \item {\tt ProdC2} theorem, 115 - \item {\tt ProdE} theorem, 115, 128, 130, 132 - \item {\tt ProdEL} theorem, 115 - \item {\tt ProdF} theorem, 115 - \item {\tt ProdFL} theorem, 115 - \item {\tt ProdI} theorem, 115, 121, 123 - \item {\tt ProdIL} theorem, 115 - \item {\tt prop_cs}, \bold{10}, \bold{75} - \item {\tt prop_pack}, \bold{104} + \item {\tt PROD} symbol, 26, 28, 113, 114 + \item {\tt Prod} constant, 112 + \item {\tt Prod} theory, 76 + \item {\tt ProdC} theorem, 116, 132 + \item {\tt ProdC2} theorem, 116 + \item {\tt ProdE} theorem, 116, 129, 131, 133 + \item {\tt ProdEL} theorem, 116 + \item {\tt ProdF} theorem, 116 + \item {\tt ProdFL} theorem, 116 + \item {\tt ProdI} theorem, 116, 122, 124 + \item {\tt ProdIL} theorem, 116 + \item {\tt prop_cs}, \bold{11}, \bold{76} + \item {\tt prop_pack}, \bold{105} \indexspace - \item {\tt qcase_def} theorem, 42 - \item {\tt qconverse} constant, 41 - \item {\tt qconverse_def} theorem, 42 - \item {\tt qed_spec_mp}, 87 - \item {\tt qfsplit_def} theorem, 42 - \item {\tt QInl_def} theorem, 42 - \item {\tt QInr_def} theorem, 42 - \item {\tt QPair} theory, 41 - \item {\tt QPair_def} theorem, 42 - \item {\tt QSigma} constant, 41 - \item {\tt QSigma_def} theorem, 42 - \item {\tt qsplit} constant, 41 - \item {\tt qsplit_def} theorem, 42 - \item {\tt qsum_def} theorem, 42 - \item {\tt QUniv} theory, 45 + \item {\tt qcase_def} theorem, 43 + \item {\tt qconverse} constant, 42 + \item {\tt qconverse_def} theorem, 43 + \item {\tt qed_spec_mp}, 88 + \item {\tt qfsplit_def} theorem, 43 + \item {\tt QInl_def} theorem, 43 + \item {\tt QInr_def} theorem, 43 + \item {\tt QPair} theory, 42 + \item {\tt QPair_def} theorem, 43 + \item {\tt QSigma} constant, 42 + \item {\tt QSigma_def} theorem, 43 + \item {\tt qsplit} constant, 42 + \item {\tt qsplit_def} theorem, 43 + \item {\tt qsum_def} theorem, 43 + \item {\tt QUniv} theory, 46 \indexspace - \item {\tt range} constant, 24, 67, 96 - \item {\tt range_def} theorem, 30, 70 - \item {\tt range_of_fun} theorem, 38, 39 - \item {\tt range_subset} theorem, 37 - \item {\tt range_type} theorem, 38 - \item {\tt rangeE} theorem, 37, 72, 96 - \item {\tt rangeI} theorem, 37, 72 - \item {\tt rank} constant, 47 - \item {\tt rank_ss}, \bold{22} - \item {\tt rec} constant, 46, 111, 114 - \item {\tt rec_0} theorem, 46 - \item {\tt rec_def} theorem, 46 - \item {\tt rec_succ} theorem, 46 - \item {\tt red_if_equal} theorem, 114 - \item {\tt Reduce} constant, 111, 114, 120 - \item {\tt refl} theorem, 7, 62, 101 - \item {\tt refl_elem} theorem, 114, 118 - \item {\tt refl_red} theorem, 114 - \item {\tt refl_type} theorem, 114, 118 - \item {\tt REPEAT_FIRST}, 119 - \item {\tt repeat_goal_tac}, \bold{105} - \item {\tt RepFun} constant, 24, 27, 28, 31 - \item {\tt RepFun_def} theorem, 29 - \item {\tt RepFunE} theorem, 33 - \item {\tt RepFunI} theorem, 33 - \item {\tt Replace} constant, 24, 27, 28, 31 - \item {\tt Replace_def} theorem, 29 - \item {\tt replace_type} theorem, 118, 130 - \item {\tt ReplaceE} theorem, 33 - \item {\tt ReplaceI} theorem, 33 - \item {\tt replacement} theorem, 29 - \item {\tt reresolve_tac}, \bold{105} - \item {\tt res_inst_tac}, 61 - \item {\tt restrict} constant, 24, 31 - \item {\tt restrict} theorem, 38 - \item {\tt restrict_bij} theorem, 44 - \item {\tt restrict_def} theorem, 30 - \item {\tt restrict_type} theorem, 38 - \item {\tt rev} constant, 48, 80 - \item {\tt rev_def} theorem, 48 - \item {\tt rew_tac}, 17, \bold{120} - \item {\tt rewrite_rule}, 18 - \item {\tt right_comp_id} theorem, 44 - \item {\tt right_comp_inverse} theorem, 44 - \item {\tt right_inverse} theorem, 44 - \item {\tt RL}, 125 - \item {\tt RS}, 130, 132 + \item {\tt range} constant, 25, 68, 97 + \item {\tt range_def} theorem, 31, 71 + \item {\tt range_of_fun} theorem, 39, 40 + \item {\tt range_subset} theorem, 38 + \item {\tt range_type} theorem, 39 + \item {\tt rangeE} theorem, 38, 73, 97 + \item {\tt rangeI} theorem, 38, 73 + \item {\tt rank} constant, 48 + \item {\tt rank_ss}, \bold{23} + \item {\tt rec} constant, 47, 112, 115 + \item {\tt rec_0} theorem, 47 + \item {\tt rec_def} theorem, 47 + \item {\tt rec_succ} theorem, 47 + \item {\tt red_if_equal} theorem, 115 + \item {\tt Reduce} constant, 112, 115, 121 + \item {\tt refl} theorem, 8, 63, 102 + \item {\tt refl_elem} theorem, 115, 119 + \item {\tt refl_red} theorem, 115 + \item {\tt refl_type} theorem, 115, 119 + \item {\tt REPEAT_FIRST}, 120 + \item {\tt repeat_goal_tac}, \bold{106} + \item {\tt RepFun} constant, 25, 28, 29, 32 + \item {\tt RepFun_def} theorem, 30 + \item {\tt RepFunE} theorem, 34 + \item {\tt RepFunI} theorem, 34 + \item {\tt Replace} constant, 25, 28, 29, 32 + \item {\tt Replace_def} theorem, 30 + \item {\tt replace_type} theorem, 119, 131 + \item {\tt ReplaceE} theorem, 34 + \item {\tt ReplaceI} theorem, 34 + \item {\tt replacement} theorem, 30 + \item {\tt reresolve_tac}, \bold{106} + \item {\tt res_inst_tac}, 62 + \item {\tt restrict} constant, 25, 32 + \item {\tt restrict} theorem, 39 + \item {\tt restrict_bij} theorem, 45 + \item {\tt restrict_def} theorem, 31 + \item {\tt restrict_type} theorem, 39 + \item {\tt rev} constant, 49, 81 + \item {\tt rev_def} theorem, 49 + \item {\tt rew_tac}, 18, \bold{121} + \item {\tt rewrite_rule}, 19 + \item {\tt right_comp_id} theorem, 45 + \item {\tt right_comp_inverse} theorem, 45 + \item {\tt right_inverse} theorem, 45 + \item {\tt RL}, 126 + \item {\tt RS}, 131, 133 \indexspace - \item {\tt safe_goal_tac}, \bold{106} - \item {\tt safe_tac}, \bold{121} - \item {\tt safestep_tac}, \bold{121} + \item {\tt safe_goal_tac}, \bold{107} + \item {\tt safe_tac}, \bold{122} + \item {\tt safestep_tac}, \bold{122} \item search - \subitem best-first, 97 - \item {\tt select_equality} theorem, 63, 65 - \item {\tt selectI} theorem, 62, 63 - \item {\tt separation} theorem, 33 - \item {\tt Seqof} constant, 99 - \item sequent calculus, 98--109 - \item {\tt Set} theory, 66, 69 - \item {\tt set} type, 66 - \item set theory, 22--57 - \item {\tt set_current_thy}, 97 - \item {\tt set_diff_def} theorem, 70 - \item {\tt set_of_list} constant, 80 - \item {\tt show_sorts}, 61 - \item {\tt show_types}, 61 - \item {\tt Sigma} constant, 24, 27, 28, 36, 75 - \item {\tt Sigma_def} theorem, 30, 75 - \item {\tt SigmaE} theorem, 36, 75 - \item {\tt SigmaE2} theorem, 36 - \item {\tt SigmaI} theorem, 36, 75 + \subitem best-first, 98 + \item {\tt select_equality} theorem, 64, 66 + \item {\tt selectI} theorem, 63, 64 + \item {\tt separation} theorem, 34 + \item {\tt Seqof} constant, 100 + \item sequent calculus, 99--110 + \item {\tt Set} theory, 67, 70 + \item {\tt set} type, 67 + \item set theory, 23--58 + \item {\tt set_current_thy}, 98 + \item {\tt set_diff_def} theorem, 71 + \item {\tt set_of_list} constant, 81 + \item {\tt show_sorts}, 62 + \item {\tt show_types}, 62 + \item {\tt Sigma} constant, 25, 28, 29, 37, 76 + \item {\tt Sigma_def} theorem, 31, 76 + \item {\tt SigmaE} theorem, 37, 76 + \item {\tt SigmaE2} theorem, 37 + \item {\tt SigmaI} theorem, 37, 76 \item simplification - \subitem of conjunctions, 5, 74 - \item {\tt singletonE} theorem, 34 - \item {\tt singletonI} theorem, 34 - \item {\tt snd} constant, 24, 28, 75, 111, 116 - \item {\tt snd_conv} theorem, 36, 75 - \item {\tt snd_def} theorem, 30, 116 - \item {\tt sobj} type, 100 - \item {\tt spec} theorem, 7, 65 - \item {\tt split} constant, 24, 28, 75, 111, 125 - \item {\tt split} theorem, 36, 75 - \item {\tt split_all_tac}, \bold{76} - \item {\tt split_def} theorem, 30 - \item {\tt ssubst} theorem, 8, 64, 66 - \item {\tt stac}, \bold{74} - \item {\tt Step_tac}, 21 - \item {\tt step_tac}, 21, \bold{106}, \bold{121} - \item {\tt strip_tac}, \bold{66} - \item {\tt subset_def} theorem, 29, 70 - \item {\tt subset_refl} theorem, 32, 71 - \item {\tt subset_trans} theorem, 32, 71 - \item {\tt subsetCE} theorem, 32, 69, 71 - \item {\tt subsetD} theorem, 32, 54, 69, 71 - \item {\tt subsetI} theorem, 32, 52, 53, 71 - \item {\tt subst} theorem, 7, 62 - \item {\tt subst_elem} theorem, 114 - \item {\tt subst_elemL} theorem, 114 - \item {\tt subst_eqtyparg} theorem, 118, 130 - \item {\tt subst_prodE} theorem, 116, 118 - \item {\tt subst_type} theorem, 114 - \item {\tt subst_typeL} theorem, 114 - \item {\tt Suc} constant, 77 - \item {\tt Suc_not_Zero} theorem, 77 - \item {\tt succ} constant, 24, 28, 111 - \item {\tt succ_def} theorem, 30 - \item {\tt succ_inject} theorem, 34 - \item {\tt succ_neq_0} theorem, 34 - \item {\tt succCI} theorem, 34 - \item {\tt succE} theorem, 34 - \item {\tt succI1} theorem, 34 - \item {\tt succI2} theorem, 34 - \item {\tt SUM} symbol, 25, 27, 112, 113 - \item {\tt Sum} constant, 111 - \item {\tt Sum} theory, 41, 76 - \item {\tt sum_case} constant, 77 - \item {\tt sum_case_Inl} theorem, 77 - \item {\tt sum_case_Inr} theorem, 77 - \item {\tt sum_def} theorem, 42 - \item {\tt sum_InlI} theorem, 42 - \item {\tt sum_InrI} theorem, 42 - \item {\tt SUM_Int_distrib1} theorem, 40 - \item {\tt SUM_Int_distrib2} theorem, 40 - \item {\tt SUM_Un_distrib1} theorem, 40 - \item {\tt SUM_Un_distrib2} theorem, 40 - \item {\tt SumC} theorem, 116 - \item {\tt SumE} theorem, 116, 121, 125 - \item {\tt sumE} theorem, 77 - \item {\tt sumE2} theorem, 42 - \item {\tt SumE_fst} theorem, 116, 118, 130, 131 - \item {\tt SumE_snd} theorem, 116, 118, 132 - \item {\tt SumEL} theorem, 116 - \item {\tt SumF} theorem, 116 - \item {\tt SumFL} theorem, 116 - \item {\tt SumI} theorem, 116, 126 - \item {\tt SumIL} theorem, 116 - \item {\tt SumIL2} theorem, 118 - \item {\tt surj} constant, 44, 70, 74 - \item {\tt surj_def} theorem, 44, 74 - \item {\tt surjective_pairing} theorem, 75 - \item {\tt surjective_sum} theorem, 77 - \item {\tt swap} theorem, 10, 65 - \item {\tt swap_res_tac}, 15, 97 - \item {\tt sym} theorem, 8, 64, 101 - \item {\tt sym_elem} theorem, 114 - \item {\tt sym_type} theorem, 114 - \item {\tt symL} theorem, 102 + \subitem of conjunctions, 6, 75 + \item {\tt singletonE} theorem, 35 + \item {\tt singletonI} theorem, 35 + \item {\tt snd} constant, 25, 29, 76, 112, 117 + \item {\tt snd_conv} theorem, 37, 76 + \item {\tt snd_def} theorem, 31, 117 + \item {\tt sobj} type, 101 + \item {\tt spec} theorem, 8, 66 + \item {\tt split} constant, 25, 29, 76, 112, 126 + \item {\tt split} theorem, 37, 76 + \item {\tt split_all_tac}, \bold{77} + \item {\tt split_def} theorem, 31 + \item {\tt ssubst} theorem, 9, 65, 67 + \item {\tt stac}, \bold{75} + \item {\tt Step_tac}, 22 + \item {\tt step_tac}, 22, \bold{107}, \bold{122} + \item {\tt strip_tac}, \bold{67} + \item {\tt subset_def} theorem, 30, 71 + \item {\tt subset_refl} theorem, 33, 72 + \item {\tt subset_trans} theorem, 33, 72 + \item {\tt subsetCE} theorem, 33, 70, 72 + \item {\tt subsetD} theorem, 33, 55, 70, 72 + \item {\tt subsetI} theorem, 33, 53, 54, 72 + \item {\tt subst} theorem, 8, 63 + \item {\tt subst_elem} theorem, 115 + \item {\tt subst_elemL} theorem, 115 + \item {\tt subst_eqtyparg} theorem, 119, 131 + \item {\tt subst_prodE} theorem, 117, 119 + \item {\tt subst_type} theorem, 115 + \item {\tt subst_typeL} theorem, 115 + \item {\tt Suc} constant, 78 + \item {\tt Suc_not_Zero} theorem, 78 + \item {\tt succ} constant, 25, 29, 112 + \item {\tt succ_def} theorem, 31 + \item {\tt succ_inject} theorem, 35 + \item {\tt succ_neq_0} theorem, 35 + \item {\tt succCI} theorem, 35 + \item {\tt succE} theorem, 35 + \item {\tt succI1} theorem, 35 + \item {\tt succI2} theorem, 35 + \item {\tt SUM} symbol, 26, 28, 113, 114 + \item {\tt Sum} constant, 112 + \item {\tt Sum} theory, 42, 77 + \item {\tt sum_case} constant, 78 + \item {\tt sum_case_Inl} theorem, 78 + \item {\tt sum_case_Inr} theorem, 78 + \item {\tt sum_def} theorem, 43 + \item {\tt sum_InlI} theorem, 43 + \item {\tt sum_InrI} theorem, 43 + \item {\tt SUM_Int_distrib1} theorem, 41 + \item {\tt SUM_Int_distrib2} theorem, 41 + \item {\tt SUM_Un_distrib1} theorem, 41 + \item {\tt SUM_Un_distrib2} theorem, 41 + \item {\tt SumC} theorem, 117 + \item {\tt SumE} theorem, 117, 122, 126 + \item {\tt sumE} theorem, 78 + \item {\tt sumE2} theorem, 43 + \item {\tt SumE_fst} theorem, 117, 119, 131, 132 + \item {\tt SumE_snd} theorem, 117, 119, 133 + \item {\tt SumEL} theorem, 117 + \item {\tt SumF} theorem, 117 + \item {\tt SumFL} theorem, 117 + \item {\tt SumI} theorem, 117, 127 + \item {\tt SumIL} theorem, 117 + \item {\tt SumIL2} theorem, 119 + \item {\tt surj} constant, 45, 71, 75 + \item {\tt surj_def} theorem, 45, 75 + \item {\tt surjective_pairing} theorem, 76 + \item {\tt surjective_sum} theorem, 78 + \item {\tt swap} theorem, 11, 66 + \item {\tt swap_res_tac}, 16, 98 + \item {\tt sym} theorem, 9, 65, 102 + \item {\tt sym_elem} theorem, 115 + \item {\tt sym_type} theorem, 115 + \item {\tt symL} theorem, 103 \indexspace - \item {\tt T} constant, 111 - \item {\tt t} type, 110 - \item {\tt take} constant, 80 - \item {\tt takeWhile} constant, 80 - \item {\tt TC} theorem, 117 - \item {\tt TE} theorem, 117 - \item {\tt TEL} theorem, 117 - \item {\tt term} class, 4, 60, 98 - \item {\tt test_assume_tac}, \bold{119} - \item {\tt TF} theorem, 117 - \item {\tt THE} symbol, 25, 27, 35, 99 - \item {\tt The} constant, 24, 27, 28, 99 - \item {\tt The} theorem, 101 - \item {\tt the_def} theorem, 29 - \item {\tt the_equality} theorem, 34, 35 - \item {\tt theI} theorem, 34, 35 - \item {\tt thinL} theorem, 101 - \item {\tt thinR} theorem, 101 - \item {\tt TI} theorem, 117 - \item {\tt times} class, 60 - \item {\tt tl} constant, 80 + \item {\tt T} constant, 112 + \item {\tt t} type, 111 + \item {\tt take} constant, 81 + \item {\tt takeWhile} constant, 81 + \item {\tt TC} theorem, 118 + \item {\tt TE} theorem, 118 + \item {\tt TEL} theorem, 118 + \item {\tt term} class, 5, 61, 99 + \item {\tt test_assume_tac}, \bold{120} + \item {\tt TF} theorem, 118 + \item {\tt THE} symbol, 26, 28, 36, 100 + \item {\tt The} constant, 25, 28, 29, 100 + \item {\tt The} theorem, 102 + \item {\tt the_def} theorem, 30 + \item {\tt the_equality} theorem, 35, 36 + \item {\tt theI} theorem, 35, 36 + \item {\tt thinL} theorem, 102 + \item {\tt thinR} theorem, 102 + \item {\tt TI} theorem, 118 + \item {\tt times} class, 61 + \item {\tt tl} constant, 81 \item tracing - \subitem of unification, 61 - \item {\tt trans} theorem, 8, 64, 101 - \item {\tt trans_elem} theorem, 114 - \item {\tt trans_red} theorem, 114 - \item {\tt trans_tac}, 79 - \item {\tt trans_type} theorem, 114 - \item {\tt True} constant, 6, 59, 99 - \item {\tt True_def} theorem, 7, 63, 101 - \item {\tt True_or_False} theorem, 62, 63 - \item {\tt TrueI} theorem, 8, 64 - \item {\tt Trueprop} constant, 6, 59, 99 - \item {\tt TrueR} theorem, 102 - \item {\tt tt} constant, 111 - \item {\tt ttl} constant, 80 - \item {\tt Type} constant, 111 - \item type definition, \bold{82} - \item {\tt typechk_tac}, \bold{119}, 124, 127, 131, 132 - \item {\tt typedef}, 79 + \subitem of unification, 62 + \item {\tt trans} theorem, 9, 65, 102 + \item {\tt trans_elem} theorem, 115 + \item {\tt trans_red} theorem, 115 + \item {\tt trans_tac}, 80 + \item {\tt trans_type} theorem, 115 + \item {\tt True} constant, 7, 60, 100 + \item {\tt True_def} theorem, 8, 64, 102 + \item {\tt True_or_False} theorem, 63, 64 + \item {\tt TrueI} theorem, 9, 65 + \item {\tt Trueprop} constant, 7, 60, 100 + \item {\tt TrueR} theorem, 103 + \item {\tt tt} constant, 112 + \item {\tt ttl} constant, 81 + \item {\tt Type} constant, 112 + \item type definition, \bold{83} + \item {\tt typechk_tac}, \bold{120}, 125, 128, 132, 133 + \item {\tt typedef}, 80 \indexspace - \item {\tt UN} symbol, 25, 27, 67--69 - \item {\tt Un} symbol, 24, 67 - \item {\tt Un1} theorem, 69 - \item {\tt Un2} theorem, 69 - \item {\tt Un_absorb} theorem, 40, 73 - \item {\tt Un_assoc} theorem, 40, 73 - \item {\tt Un_commute} theorem, 40, 73 - \item {\tt Un_def} theorem, 29, 70 - \item {\tt UN_E} theorem, 33, 72 - \item {\tt UN_I} theorem, 33, 72 - \item {\tt Un_Int_distrib} theorem, 40, 73 - \item {\tt Un_Inter} theorem, 73 - \item {\tt Un_Inter_RepFun} theorem, 40 - \item {\tt Un_least} theorem, 35, 73 - \item {\tt Un_Union_image} theorem, 73 - \item {\tt Un_upper1} theorem, 35, 73 - \item {\tt Un_upper2} theorem, 35, 73 - \item {\tt UnCI} theorem, 34, 35, 69, 72 - \item {\tt UnE} theorem, 34, 72 - \item {\tt UnI1} theorem, 34, 35, 56, 72 - \item {\tt UnI2} theorem, 34, 35, 72 + \item {\tt UN} symbol, 26, 28, 68--70 + \item {\tt Un} symbol, 25, 68 + \item {\tt Un1} theorem, 70 + \item {\tt Un2} theorem, 70 + \item {\tt Un_absorb} theorem, 41, 74 + \item {\tt Un_assoc} theorem, 41, 74 + \item {\tt Un_commute} theorem, 41, 74 + \item {\tt Un_def} theorem, 30, 71 + \item {\tt UN_E} theorem, 34, 73 + \item {\tt UN_I} theorem, 34, 73 + \item {\tt Un_Int_distrib} theorem, 41, 74 + \item {\tt Un_Inter} theorem, 74 + \item {\tt Un_Inter_RepFun} theorem, 41 + \item {\tt Un_least} theorem, 36, 74 + \item {\tt Un_Union_image} theorem, 74 + \item {\tt Un_upper1} theorem, 36, 74 + \item {\tt Un_upper2} theorem, 36, 74 + \item {\tt UnCI} theorem, 35, 36, 70, 73 + \item {\tt UnE} theorem, 35, 73 + \item {\tt UnI1} theorem, 35, 36, 57, 73 + \item {\tt UnI2} theorem, 35, 36, 73 \item unification - \subitem incompleteness of, 61 - \item {\tt Unify.trace_types}, 61 - \item {\tt UNION} constant, 67 - \item {\tt Union} constant, 24, 67 - \item {\tt UNION1} constant, 67 - \item {\tt UNION1_def} theorem, 70 - \item {\tt UNION_def} theorem, 70 - \item {\tt Union_def} theorem, 70 - \item {\tt Union_iff} theorem, 29 - \item {\tt Union_least} theorem, 35, 73 - \item {\tt Union_Un_distrib} theorem, 40, 73 - \item {\tt Union_upper} theorem, 35, 73 - \item {\tt UnionE} theorem, 33, 54, 72 - \item {\tt UnionI} theorem, 33, 54, 72 - \item {\tt unit_eq} theorem, 76 - \item {\tt Univ} theory, 45 - \item {\tt Upair} constant, 23, 24, 28 - \item {\tt Upair_def} theorem, 29 - \item {\tt UpairE} theorem, 33 - \item {\tt UpairI1} theorem, 33 - \item {\tt UpairI2} theorem, 33 + \subitem incompleteness of, 62 + \item {\tt Unify.trace_types}, 62 + \item {\tt UNION} constant, 68 + \item {\tt Union} constant, 25, 68 + \item {\tt UNION1} constant, 68 + \item {\tt UNION1_def} theorem, 71 + \item {\tt UNION_def} theorem, 71 + \item {\tt Union_def} theorem, 71 + \item {\tt Union_iff} theorem, 30 + \item {\tt Union_least} theorem, 36, 74 + \item {\tt Union_Un_distrib} theorem, 41, 74 + \item {\tt Union_upper} theorem, 36, 74 + \item {\tt UnionE} theorem, 34, 55, 73 + \item {\tt UnionI} theorem, 34, 55, 73 + \item {\tt unit_eq} theorem, 77 + \item {\tt Univ} theory, 46 + \item {\tt Upair} constant, 24, 25, 29 + \item {\tt Upair_def} theorem, 30 + \item {\tt UpairE} theorem, 34 + \item {\tt UpairI1} theorem, 34 + \item {\tt UpairI2} theorem, 34 \indexspace - \item {\tt vimage_def} theorem, 30 - \item {\tt vimageE} theorem, 37 - \item {\tt vimageI} theorem, 37 + \item {\tt vimage_def} theorem, 31 + \item {\tt vimageE} theorem, 38 + \item {\tt vimageI} theorem, 38 \indexspace - \item {\tt when} constant, 111, 116, 125 + \item {\tt when} constant, 112, 117, 126 \indexspace - \item {\tt xor_def} theorem, 41 + \item {\tt xor_def} theorem, 42 \indexspace - \item {\tt zero_ne_succ} theorem, 114, 115 - \item {\tt ZF} theory, 1, 22, 58 - \item {\tt ZF_cs}, \bold{22} - \item {\tt ZF_ss}, \bold{22} + \item {\tt zero_ne_succ} theorem, 115, 116 + \item {\tt ZF} theory, 1, 23, 59 + \item {\tt ZF_cs}, \bold{23} + \item {\tt ZF_ss}, \bold{23} \end{theindex} diff -r 567c093297e6 -r 4bbeb1f58a23 doc-src/Ref/ref.rao --- a/doc-src/Ref/ref.rao Fri May 16 15:50:24 1997 +0200 +++ b/doc-src/Ref/ref.rao Fri May 16 15:51:11 1997 +0200 @@ -1,7 +1,7 @@ % This file was generated by 'rail' from 'ref.rai' \rail@t {lbrace} \rail@t {rbrace} -\rail@i {1}{ \par theoryDef : id '=' (name + '+') ('+' extension | ()) ; \par name: id | string ; \par extension : (section +) 'end' ( () | ml ) ; \par section : classes | default | types | arities | consts | syntax | trans | defs | constdefs | rules | axclass | instance | oracle ; \par classes : 'classes' ( classDecl + ) ; \par classDecl : (id (() | '<' (id + ','))) ; \par default : 'default' sort ; \par sort : id | lbrace (id * ',') rbrace ; \par types : 'types' ( ( typeDecl ( () | '(' infix ')' ) ) + ) ; \par infix : ( 'infixr' | 'infixl' ) nat ; \par typeDecl : typevarlist name ( () | '=' ( string | type ) ); \par typevarlist : () | tid | '(' ( tid + ',' ) ')'; \par type : simpleType | '(' type ')' | type '=>' type | '[' ( type + "," ) ']' '=>' type; \par simpleType: id | ( tid ( () | '::' id ) ) | '(' ( type + "," ) ')' id | simpleType id ; \par arities : 'arities' ((name + ',') '::' arity +) ; \par arity : ( () | '(' (sort + ',') ')' ) sort ; \par consts : 'consts' ( mixfixConstDecl + ) ; \par syntax : 'syntax' (() | mode) ( mixfixConstDecl + ); \par mode : '(' name (() | 'output') ')' ; \par mixfixConstDecl : constDecl (() | ( '(' mixfix ')' )) ; \par constDecl : ( name + ',') '::' (string | type); \par mixfix : string ( () | ( () | ('[' (nat + ',') ']')) nat ) | ( 'infixr' | 'infixl' ) (() | string) nat | 'binder' string nat ; \par trans : 'translations' ( pat ( '==' | '=>' | '<=' ) pat + ) ; \par pat : ( () | ( '(' id ')' ) ) string; \par rules : 'rules' (( id string ) + ) ; \par defs : 'defs' (( id string ) + ) ; \par constdefs : 'constdefs' (id '::' (string | type) string +) ; \par axclass : 'axclass' classDecl (() | ( id string ) +) ; \par instance : 'instance' ( name '<' name | name '::' arity) witness ; \par witness : (() | '(' ((string | longident) + ',') ')') (() | verbatim) ; \par oracle : 'oracle' name ; \par ml : 'ML' text ; \par } +\rail@i {1}{ \par theoryDef : id '=' (name + '+') ('+' extension | ()) ; \par name: id | string ; \par extension : (section +) 'end' ( () | ml ) ; \par section : classes | default | types | arities | consts | syntax | trans | defs | constdefs | rules | axclass | instance | oracle ; \par classes : 'classes' ( classDecl + ) ; \par classDecl : (id (() | '<' (id + ','))) ; \par default : 'default' sort ; \par sort : id | lbrace (id * ',') rbrace ; \par types : 'types' ( ( typeDecl ( () | '(' infix ')' ) ) + ) ; \par infix : ( 'infixr' | 'infixl' ) (() | string) nat ; \par typeDecl : typevarlist name ( () | '=' ( string | type ) ); \par typevarlist : () | tid | '(' ( tid + ',' ) ')'; \par type : simpleType | '(' type ')' | type '=>' type | '[' ( type + "," ) ']' '=>' type; \par simpleType: id | ( tid ( () | '::' id ) ) | '(' ( type + "," ) ')' id | simpleType id ; \par arities : 'arities' ((name + ',') '::' arity +) ; \par arity : ( () | '(' (sort + ',') ')' ) sort ; \par consts : 'consts' ( mixfixConstDecl + ) ; \par syntax : 'syntax' (() | mode) ( mixfixConstDecl + ); \par mode : '(' name (() | 'output') ')' ; \par mixfixConstDecl : constDecl (() | ( '(' mixfix ')' )) ; \par constDecl : ( name + ',') '::' (string | type); \par mixfix : string ( () | ( () | ('[' (nat + ',') ']')) nat ) | infix | 'binder' string nat ; \par trans : 'translations' ( pat ( '==' | '=>' | '<=' ) pat + ) ; \par pat : ( () | ( '(' id ')' ) ) string; \par rules : 'rules' (( id string ) + ) ; \par defs : 'defs' (( id string ) + ) ; \par constdefs : 'constdefs' (id '::' (string | type) string +) ; \par axclass : 'axclass' classDecl (() | ( id string ) +) ; \par instance : 'instance' ( name '<' name | name '::' arity) witness ; \par witness : (() | '(' ((string | longident) + ',') ')') (() | verbatim) ; \par oracle : 'oracle' name ; \par ml : 'ML' text ; \par } \rail@o {1}{ \rail@begin{2}{theoryDef} \rail@nont{id}[] @@ -122,6 +122,10 @@ \rail@nextbar{1} \rail@term{infixl}[] \rail@endbar +\rail@bar +\rail@nextbar{1} +\rail@nont{string}[] +\rail@endbar \rail@nont{nat}[] \rail@end \rail@begin{3}{typeDecl} @@ -273,7 +277,7 @@ \rail@nont{type}[] \rail@endbar \rail@end -\rail@begin{7}{mixfix} +\rail@begin{6}{mixfix} \rail@bar \rail@nont{string}[] \rail@bar @@ -291,17 +295,8 @@ \rail@nont{nat}[] \rail@endbar \rail@nextbar{4} -\rail@bar -\rail@term{infixr}[] +\rail@nont{infix}[] \rail@nextbar{5} -\rail@term{infixl}[] -\rail@endbar -\rail@bar -\rail@nextbar{5} -\rail@nont{string}[] -\rail@endbar -\rail@nont{nat}[] -\rail@nextbar{6} \rail@term{binder}[] \rail@nont{string}[] \rail@nont{nat}[]