# HG changeset patch # User nipkow # Date 1546257915 -3600 # Node ID 4d4aedf9e57fd5eafc07bc75a3dd08fea3008829 # Parent 2c2e2b3e19b7dcf9d71d7cc69a2baaeeb7322b4e tuned layout diff -r 2c2e2b3e19b7 -r 4d4aedf9e57f src/HOL/Analysis/Sigma_Algebra.thy --- a/src/HOL/Analysis/Sigma_Algebra.thy Mon Dec 31 12:25:21 2018 +0100 +++ b/src/HOL/Analysis/Sigma_Algebra.thy Mon Dec 31 13:05:15 2018 +0100 @@ -802,7 +802,7 @@ subsubsection%unimportant \Ring generated by a semiring\ -definition (in semiring_of_sets) +definition (in semiring_of_sets) generated_ring :: "'a set set" where "generated_ring = { \C | C. C \ M \ finite C \ disjoint C }" lemma (in semiring_of_sets) generated_ringE[elim?]: @@ -947,7 +947,7 @@ subsubsection \Closed CDI\ -definition%important closed_cdi where +definition%important closed_cdi :: "'a set \ 'a set set \ bool" where "closed_cdi \ M \ M \ Pow \ & (\s \ M. \ - s \ M) & @@ -1243,7 +1243,8 @@ subsubsection "Intersection sets systems" -definition%important "Int_stable M \ (\ a \ M. \ b \ M. a \ b \ M)" +definition%important Int_stable :: "'a set set \ bool" where +"Int_stable M \ (\ a \ M. \ b \ M. a \ b \ M)" lemma (in algebra) Int_stable: "Int_stable M" unfolding Int_stable_def by auto @@ -1283,7 +1284,7 @@ subsubsection "Smallest Dynkin systems" -definition%important dynkin where +definition%important dynkin :: "'a set \ 'a set set \ 'a set set" where "dynkin \ M = (\{D. dynkin_system \ D \ M \ D})" lemma dynkin_system_dynkin: @@ -1460,13 +1461,16 @@ "positive M \ \ \ {} = 0" definition%important countably_additive :: "'a set set \ ('a set \ ennreal) \ bool" where - "countably_additive M f \ (\A. range A \ M \ disjoint_family A \ (\i. A i) \ M \ +"countably_additive M f \ + (\A. range A \ M \ disjoint_family A \ (\i. A i) \ M \ (\i. f (A i)) = f (\i. A i))" definition%important measure_space :: "'a set \ 'a set set \ ('a set \ ennreal) \ bool" where - "measure_space \ A \ \ sigma_algebra \ A \ positive A \ \ countably_additive A \" +"measure_space \ A \ \ + sigma_algebra \ A \ positive A \ \ countably_additive A \" -typedef%important 'a measure = "{(\::'a set, A, \). (\a\-A. \ a = 0) \ measure_space \ A \ }" +typedef%important 'a measure = + "{(\::'a set, A, \). (\a\-A. \ a = 0) \ measure_space \ A \ }" proof%unimportant have "sigma_algebra UNIV {{}, UNIV}" by (auto simp: sigma_algebra_iff2) @@ -1498,8 +1502,10 @@ interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure" using measure_space[of M] by (auto simp: measure_space_def) -definition%important measure_of :: "'a set \ 'a set set \ ('a set \ ennreal) \ 'a measure" where - "measure_of \ A \ = Abs_measure (\, if A \ Pow \ then sigma_sets \ A else {{}, \}, +definition%important measure_of :: "'a set \ 'a set set \ ('a set \ ennreal) \ 'a measure" + where +"measure_of \ A \ = + Abs_measure (\, if A \ Pow \ then sigma_sets \ A else {{}, \}, \a. if a \ sigma_sets \ A \ measure_space \ (sigma_sets \ A) \ then \ a else 0)" abbreviation "sigma \ A \ measure_of \ A (\x. 0)" @@ -1715,8 +1721,9 @@ subsubsection \Measurable functions\ -definition%important measurable :: "'a measure \ 'b measure \ ('a \ 'b) set" (infixr "\\<^sub>M" 60) where - "measurable A B = {f \ space A \ space B. \y \ sets B. f -` y \ space A \ sets A}" +definition%important measurable :: "'a measure \ 'b measure \ ('a \ 'b) set" + (infixr "\\<^sub>M" 60) where +"measurable A B = {f \ space A \ space B. \y \ sets B. f -` y \ space A \ sets A}" lemma measurableI: "(\x. x \ space M \ f x \ space N) \ (\A. A \ sets N \ f -` A \ space M \ sets M) \ @@ -1878,7 +1885,7 @@ subsubsection \Counting space\ definition%important count_space :: "'a set \ 'a measure" where - "count_space \ = measure_of \ (Pow \) (\A. if finite A then of_nat (card A) else \)" +"count_space \ = measure_of \ (Pow \) (\A. if finite A then of_nat (card A) else \)" lemma shows space_count_space[simp]: "space (count_space \) = \" @@ -1955,7 +1962,9 @@ subsubsection%unimportant \Extend measure\ -definition "extend_measure \ I G \ = +definition extend_measure :: "'a set \ 'b set \ ('b \ 'a set) \ ('b \ ennreal) \ 'a measure" + where +"extend_measure \ I G \ = (if (\\'. (\i\I. \' (G i) = \ i) \ measure_space \ (sigma_sets \ (G`I)) \') \ \ (\i\I. \ i = 0) then measure_of \ (G`I) (SOME \'. (\i\I. \' (G i) = \ i) \ measure_space \ (sigma_sets \ (G`I)) \') else measure_of \ (G`I) (\_. 0))" @@ -2015,7 +2024,7 @@ subsection \The smallest $\sigma$-algebra regarding a function\ -definition%important +definition%important vimage_algebra :: "'a set \ ('a \ 'b) \ 'b measure \ 'a measure" where "vimage_algebra X f M = sigma X {f -` A \ X | A. A \ sets M}" lemma space_vimage_algebra[simp]: "space (vimage_algebra X f M) = X" @@ -2090,7 +2099,7 @@ subsubsection \Restricted Space Sigma Algebra\ -definition restrict_space where +definition restrict_space :: "'a measure \ 'a set \ 'a measure" where "restrict_space M \ = measure_of (\ \ space M) (((\) \) ` sets M) (emeasure M)" lemma space_restrict_space: "space (restrict_space M \) = \ \ space M"