# HG changeset patch # User urbanc # Date 1174828507 -7200 # Node ID 4dfa849069153d6ddde90da13371b8d315f3d812 # Parent 651777b8dc304dd7430b150003d3a7cec4464dda moving lemmas into appropriate sections diff -r 651777b8dc30 -r 4dfa84906915 src/HOL/Nominal/Nominal.thy --- a/src/HOL/Nominal/Nominal.thy Fri Mar 23 12:06:41 2007 +0100 +++ b/src/HOL/Nominal/Nominal.thy Sun Mar 25 15:15:07 2007 +0200 @@ -110,6 +110,22 @@ apply(simp add: perm_fun_def) done +lemma imp_eqvt: + shows "pi\(A\B) = ((pi\A)\(pi\B))" + by (simp add: perm_bool) + +lemma conj_eqvt: + shows "pi\(A\B) = ((pi\A)\(pi\B))" + by (simp add: perm_bool) + +lemma disj_eqvt: + shows "pi\(A\B) = ((pi\A)\(pi\B))" + by (simp add: perm_bool) + +lemma neg_eqvt: + shows "pi\(\ A) = (\ (pi\A))" + by (simp add: perm_bool) + (* permutation on options *) primrec (unchecked perm_option) @@ -1678,7 +1694,6 @@ qed section {* equivaraince for some connectives *} -(* FIXME: maybe not really needed *) lemma pt_all_eqvt: fixes pi :: "'x prm" @@ -1696,32 +1711,12 @@ and x :: "'a" assumes pt: "pt TYPE('a) TYPE('x)" and at: "at TYPE('x)" - shows "pi\(\(x::'a). P x) = (\ (x::'a). (pi\P) x)" + shows "pi\(\(x::'a). P x) = (\(x::'a). (pi\P) x)" apply(auto simp add: perm_bool perm_fun_def) apply(rule_tac x="pi\x" in exI) apply(simp add: pt_rev_pi[OF pt, OF at]) done -lemma imp_eqvt: - fixes pi::"'x prm" - shows "pi\(A\B) = ((pi\A)\(pi\B))" - by (simp add: perm_bool) - -lemma conj_eqvt: - fixes pi::"'x prm" - shows "pi\(A\B) = ((pi\A)\(pi\B))" - by (simp add: perm_bool) - -lemma disj_eqvt: - fixes pi::"'x prm" - shows "pi\(A\B) = ((pi\A)\(pi\B))" - by (simp add: perm_bool) - -lemma neg_eqvt: - fixes pi::"'x prm" - shows "pi\(\ A) = (\ (pi\A))" - by (simp add: perm_bool) - section {* facts about supports *} (*==============================*)