# HG changeset patch # User wenzelm # Date 1375824025 -7200 # Node ID 4eb44754f1bbd2c60bb7ecb7e949ce95ba273d1c # Parent 91f7fcaa214777916e51b430fa3ca9880d75c73b misc tuning and simplification; diff -r 91f7fcaa2147 -r 4eb44754f1bb src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Tue Aug 06 22:27:52 2013 +0200 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Tue Aug 06 23:20:25 2013 +0200 @@ -10,62 +10,61 @@ text{* Application of polynomial as a real function. *} -primrec poly :: "'a list => 'a => ('a::{comm_ring})" +primrec poly :: "'a list \ 'a \ 'a::comm_ring" where poly_Nil: "poly [] x = 0" -| poly_Cons: "poly (h#t) x = h + x * poly t x" +| poly_Cons: "poly (h # t) x = h + x * poly t x" subsection{*Arithmetic Operations on Polynomials*} text{*addition*} -primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "+++" 65) +primrec padd :: "'a list \ 'a list \ 'a::comm_ring_1 list" (infixl "+++" 65) where padd_Nil: "[] +++ l2 = l2" -| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t - else (h + hd l2)#(t +++ tl l2))" +| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))" text{*Multiplication by a constant*} -primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) +primrec cmult :: "'a::comm_ring_1 \ 'a list \ 'a list" (infixl "%*" 70) where cmult_Nil: "c %* [] = []" -| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" +| cmult_Cons: "c %* (h # t) = (c * h) # (c %* t)" text{*Multiplication by a polynomial*} -primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "***" 70) +primrec pmult :: "'a list \ 'a list \ 'a::comm_ring_1 list" (infixl "***" 70) where pmult_Nil: "[] *** l2 = []" -| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 - else (h %* l2) +++ ((0) # (t *** l2)))" +| pmult_Cons: "(h # t) *** l2 = + (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))" text{*Repeated multiplication by a polynomial*} -primrec mulexp :: "[nat, 'a list, 'a list] => ('a ::comm_ring_1) list" +primrec mulexp :: "nat \ 'a list \ 'a list \ 'a::comm_ring_1 list" where mulexp_zero: "mulexp 0 p q = q" | mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" text{*Exponential*} -primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list" (infixl "%^" 80) +primrec pexp :: "'a list \ nat \ 'a::comm_ring_1 list" (infixl "%^" 80) where pexp_0: "p %^ 0 = [1]" | pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" text{*Quotient related value of dividing a polynomial by x + a*} (* Useful for divisor properties in inductive proofs *) -primrec pquot :: "['a list, 'a::field] => 'a list" +primrec pquot :: "'a list \ 'a::field \ 'a list" where - pquot_Nil: "pquot [] a= []" -| pquot_Cons: - "pquot (h#t) a = (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" + pquot_Nil: "pquot [] a = []" +| pquot_Cons: "pquot (h # t) a = + (if t = [] then [h] else (inverse a * (h - hd (pquot t a))) # pquot t a)" text{*normalization of polynomials (remove extra 0 coeff)*} -primrec pnormalize :: "('a::comm_ring_1) list => 'a list" +primrec pnormalize :: "'a::comm_ring_1 list \ 'a list" where pnormalize_Nil: "pnormalize [] = []" -| pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = []) - then (if (h = 0) then [] else [h]) - else (h#(pnormalize p)))" +| pnormalize_Cons: "pnormalize (h # p) = + (if (pnormalize p = []) then (if h = 0 then [] else [h]) + else (h # pnormalize p))" definition "pnormal p = ((pnormalize p = p) \ p \ [])" definition "nonconstant p = (pnormal p \ (\x. p \ [x]))" @@ -74,20 +73,18 @@ definition poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80) where "-- p = (- 1) %* p" -definition divides :: "[('a::comm_ring_1) list, 'a list] => bool" (infixl "divides" 70) - where "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" +definition divides :: "'a::comm_ring_1 list \ 'a list \ bool" (infixl "divides" 70) + where "p1 divides p2 = (\q. poly p2 = poly (p1 *** q))" -definition order :: "('a::comm_ring_1) => 'a list => nat" --{*order of a polynomial*} - where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ (Suc n)) divides p))" +definition order :: "'a::comm_ring_1 \ 'a list \ nat" --{*order of a polynomial*} + where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ Suc n) divides p))" -definition degree :: "('a::comm_ring_1) list => nat" --{*degree of a polynomial*} +definition degree :: "'a::comm_ring_1 list \ nat" --{*degree of a polynomial*} where "degree p = length (pnormalize p) - 1" -definition - rsquarefree :: "('a::comm_ring_1) list => bool" where - --{*squarefree polynomials --- NB with respect to real roots only.*} - "rsquarefree p = (poly p \ poly [] & - (\a. (order a p = 0) | (order a p = 1)))" +definition rsquarefree :: "'a::comm_ring_1 list \ bool" + where --{*squarefree polynomials --- NB with respect to real roots only.*} + "rsquarefree p = (poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1))" lemma padd_Nil2 [simp]: "p +++ [] = p" by (induct p) auto @@ -110,63 +107,58 @@ text{*Handy general properties*} lemma padd_commut: "b +++ a = a +++ b" - apply (subgoal_tac "\a. b +++ a = a +++ b") - apply (induct_tac [2] "b", auto) + apply (induct b arbitrary: a) + apply auto apply (rule padd_Cons [THEN ssubst]) - apply (case_tac "aa", auto) + apply (case_tac aa) + apply auto done -lemma padd_assoc [rule_format]: "\b c. (a +++ b) +++ c = a +++ (b +++ c)" - apply (induct "a", simp, clarify) - apply (case_tac b, simp_all) +lemma padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)" + apply (induct a arbitrary: b c) + apply simp + apply (case_tac b) + apply simp_all done -lemma poly_cmult_distr [rule_format]: "\q. a %* ( p +++ q) = (a %* p +++ a %* q)" - apply (induct p) +lemma poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)" + apply (induct p arbitrary: q) apply simp - apply clarify apply (case_tac q) apply (simp_all add: distrib_left) done -lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" - apply (induct t) - apply simp - apply (auto simp add: padd_commut) - done +lemma pmult_by_x [simp]: "[0, 1] *** t = ((0)#t)" + by (induct t) (auto simp add: padd_commut) text{*properties of evaluation of polynomials.*} lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" - apply (subgoal_tac "\p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x") - apply (induct_tac [2] "p1", auto) + apply (induct p1 arbitrary: p2) + apply auto apply (case_tac "p2") apply (auto simp add: distrib_left) done lemma poly_cmult: "poly (c %* p) x = c * poly p x" - apply (induct "p") - apply (case_tac [2] "x=0") + apply (induct p) + apply simp + apply (cases "x = 0") apply (auto simp add: distrib_left mult_ac) done lemma poly_minus: "poly (-- p) x = - (poly p x)" - apply (simp add: poly_minus_def) - apply (auto simp add: poly_cmult) - done + by (simp add: poly_minus_def poly_cmult) lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" - apply (subgoal_tac "\p2. poly (p1 *** p2) x = poly p1 x * poly p2 x") - apply (simp (no_asm_simp)) - apply (induct "p1") - apply (auto simp add: poly_cmult) + apply (induct p1 arbitrary: p2) apply (case_tac p1) apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac) done lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n" - by (induct "n") (auto simp add: poly_cmult poly_mult) + by (induct n) (auto simp add: poly_cmult poly_mult) text{*More Polynomial Evaluation Lemmas*} @@ -177,45 +169,49 @@ by (simp add: poly_mult mult_assoc) lemma poly_mult_Nil2 [simp]: "poly (p *** []) x = 0" - by (induct "p") auto + by (induct p) auto lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" - by (induct "n") (auto simp add: poly_mult mult_assoc) + by (induct n) (auto simp add: poly_mult mult_assoc) subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides @{term "p(x)"} *} -lemma lemma_poly_linear_rem: "\h. \q r. h#t = [r] +++ [-a, 1] *** q" - apply (induct "t", safe) +lemma poly_linear_rem: "\q r. h # t = [r] +++ [-a, 1] *** q" + apply (induct t arbitrary: h) apply (rule_tac x = "[]" in exI) - apply (rule_tac x = h in exI, simp) - apply (drule_tac x = aa in spec, safe) + apply (rule_tac x = h in exI) + apply simp + apply (drule_tac x = aa in meta_spec) + apply safe apply (rule_tac x = "r#q" in exI) apply (rule_tac x = "a*r + h" in exI) - apply (case_tac "q", auto) + apply (case_tac q) + apply auto done -lemma poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q" - using lemma_poly_linear_rem [where t = t and a = a] by auto - - -lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\q. p = [-a, 1] *** q))" +lemma poly_linear_divides: "poly p a = 0 \ p = [] \ (\q. p = [-a, 1] *** q)" apply (auto simp add: poly_add poly_cmult distrib_left) - apply (case_tac "p", simp) - apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe) - apply (case_tac "q", auto) - apply (drule_tac x = "[]" in spec, simp) + apply (case_tac p) + apply simp + apply (cut_tac h = aa and t = list and a = a in poly_linear_rem) + apply safe + apply (case_tac q) + apply auto + apply (drule_tac x = "[]" in spec) + apply simp apply (auto simp add: poly_add poly_cmult add_assoc) - apply (drule_tac x = "aa#lista" in spec, auto) + apply (drule_tac x = "aa#lista" in spec) + apply auto done -lemma lemma_poly_length_mult [simp]: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" - by (induct p) auto +lemma lemma_poly_length_mult [simp]: "length (k %* p +++ (h # (a %* p))) = Suc (length p)" + by (induct p arbitrary: h k a) auto -lemma lemma_poly_length_mult2 [simp]: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" - by (induct p) auto +lemma lemma_poly_length_mult2 [simp]: "length (k %* p +++ (h # p)) = Suc (length p)" + by (induct p arbitrary: h k) auto -lemma poly_length_mult [simp]: "length([-a,1] *** q) = Suc (length q)" +lemma poly_length_mult [simp]: "length([-a, 1] *** q) = Suc (length q)" by auto @@ -224,26 +220,23 @@ lemma poly_cmult_length [simp]: "length (a %* p) = length p" by (induct p) auto -lemma poly_add_length [rule_format]: - "\p2. length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)" - apply (induct p1) - apply simp_all - apply arith - done +lemma poly_add_length: + "length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)" + by (induct p1 arbitrary: p2) auto -lemma poly_root_mult_length [simp]: "length([a,b] *** p) = Suc (length p)" +lemma poly_root_mult_length [simp]: "length ([a, b] *** p) = Suc (length p)" by simp -lemma poly_mult_not_eq_poly_Nil [simp]: "(poly (p *** q) x \ poly [] x) = - (poly p x \ poly [] x & poly q x \ poly [] (x::'a::idom))" +lemma poly_mult_not_eq_poly_Nil [simp]: + "poly (p *** q) x \ poly [] x \ poly p x \ poly [] x \ poly q x \ poly [] (x::'a::idom)" by (auto simp add: poly_mult) -lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)" +lemma poly_mult_eq_zero_disj: "poly (p *** q) (x::'a::idom) = 0 \ poly p x = 0 \ poly q x = 0" by (auto simp add: poly_mult) text{*Normalisation Properties*} -lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" +lemma poly_normalized_nil: "pnormalize p = [] \ poly p x = 0" by (induct p) auto text{*A nontrivial polynomial of degree n has no more than n roots*} @@ -251,16 +244,21 @@ lemma poly_roots_index_lemma0 [rule_format]: "\p x. poly p x \ poly [] x & length p = n --> (\i. \x. (poly p x = (0::'a::idom)) --> (\m. (m \ n & x = i m)))" - apply (induct "n", safe) + apply (induct n) + apply safe apply (rule ccontr) - apply (subgoal_tac "\a. poly p a = 0", safe) - apply (drule poly_linear_divides [THEN iffD1], safe) + apply (subgoal_tac "\a. poly p a = 0") + apply safe + apply (drule poly_linear_divides [THEN iffD1]) + apply safe apply (drule_tac x = q in spec) apply (drule_tac x = x in spec) apply (simp del: poly_Nil pmult_Cons) apply (erule exE) - apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe) - apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe) + apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec) + apply safe + apply (drule poly_mult_eq_zero_disj [THEN iffD1]) + apply safe apply (drule_tac x = "Suc (length q)" in spec) apply (auto simp add: field_simps) apply (drule_tac x = xa in spec) @@ -278,7 +276,8 @@ lemma poly_roots_finite_lemma: "poly p (x::'a::idom) \ poly [] x \ \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N & x = i n)" - apply (drule poly_roots_index_length0, safe) + apply (drule poly_roots_index_length0) + apply safe apply (rule_tac x = "Suc (length p)" in exI) apply (rule_tac x = i in exI) apply (simp add: less_Suc_eq_le) @@ -286,22 +285,25 @@ lemma real_finite_lemma: - assumes P: "\x. P x --> (\n. n < length j & x = j!n)" + assumes "\x. P x \ (\n. n < length j & x = j!n)" shows "finite {(x::'a::idom). P x}" proof - let ?M = "{x. P x}" let ?N = "set j" - have "?M \ ?N" using P by auto + have "?M \ ?N" using assms by auto then show ?thesis using finite_subset by auto qed lemma poly_roots_index_lemma [rule_format]: "\p x. poly p x \ poly [] x & length p = n \ (\i. \x. (poly p x = (0::'a::{idom})) \ x \ set i)" - apply (induct "n", safe) + apply (induct n) + apply safe apply (rule ccontr) - apply (subgoal_tac "\a. poly p a = 0", safe) - apply (drule poly_linear_divides [THEN iffD1], safe) + apply (subgoal_tac "\a. poly p a = 0") + apply safe + apply (drule poly_linear_divides [THEN iffD1]) + apply safe apply (drule_tac x = q in spec) apply (drule_tac x = x in spec) apply (auto simp del: poly_Nil pmult_Cons) @@ -348,21 +350,21 @@ lemma UNIV_ring_char_0_infinte: "\ finite (UNIV:: ('a::ring_char_0) set)" proof assume F: "finite (UNIV :: 'a set)" - have th0: "of_nat ` UNIV \ (UNIV:: 'a set)" by simp + have th0: "of_nat ` UNIV \ (UNIV :: 'a set)" by simp from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" . - have th': "inj_on (of_nat::nat \ 'a) (UNIV)" + have th': "inj_on (of_nat::nat \ 'a) UNIV" unfolding inj_on_def by auto from finite_imageD[OF th th'] UNIV_nat_infinite show False by blast qed -lemma poly_roots_finite: "(poly p \ poly []) = finite {x. poly p x = (0::'a::{idom, ring_char_0})}" +lemma poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = (0::'a::{idom,ring_char_0})}" proof - assume H: "poly p \ poly []" - show "finite {x. poly p x = (0::'a)}" - using H + assume "poly p \ poly []" + then show "finite {x. poly p x = (0::'a)}" apply - - apply (erule contrapos_np, rule ext) + apply (erule contrapos_np) + apply (rule ext) apply (rule ccontr) apply (clarify dest!: poly_roots_finite_lemma') using finite_subset @@ -376,7 +378,8 @@ qed next assume "finite {x. poly p x = (0\'a)}" - then show "poly p \ poly []" using UNIV_ring_char_0_infinte by auto + then show "poly p \ poly []" + using UNIV_ring_char_0_infinte by auto qed text{*Entirety and Cancellation for polynomials*} @@ -387,21 +390,21 @@ by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) lemma poly_entire: - "(poly (p *** q) = - poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))" + "poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list) \ + (poly p = poly [] \ poly q = poly [])" apply (auto dest: fun_cong simp add: poly_entire_lemma poly_mult) apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) done lemma poly_entire_neg: - "(poly (p *** q) \ poly ([]::('a::{idom,ring_char_0}) list)) = - ((poly p \ poly []) & (poly q \ poly []))" + "poly (p *** q) \ poly ([]::('a::{idom,ring_char_0}) list) \ + poly p \ poly [] \ poly q \ poly []" by (simp add: poly_entire) lemma fun_eq: "f = g \ (\x. f x = g x)" by auto -lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)" +lemma poly_add_minus_zero_iff: "poly (p +++ -- q) = poly [] \ poly p = poly q" by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult) lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" @@ -409,26 +412,27 @@ lemma poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = - (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)" + (poly p = poly ([]::('a::{idom,ring_char_0}) list) | poly q = poly r)" apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) apply (auto simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) done lemma poly_exp_eq_zero [simp]: - "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \ 0)" + "poly (p %^ n) = poly ([]::('a::idom) list) \ poly p = poly [] \ n \ 0" apply (simp only: fun_eq add: HOL.all_simps [symmetric]) apply (rule arg_cong [where f = All]) apply (rule ext) - apply (induct_tac "n") + apply (induct_tac n) apply (auto simp add: poly_mult) done -lemma poly_prime_eq_zero [simp]: "poly [a,(1::'a::comm_ring_1)] \ poly []" +lemma poly_prime_eq_zero [simp]: "poly [a, 1::'a::comm_ring_1] \ poly []" apply (simp add: fun_eq) - apply (rule_tac x = "1 - a" in exI, simp) + apply (rule_tac x = "1 - a" in exI) + apply simp done -lemma poly_exp_prime_eq_zero [simp]: "(poly ([a, (1::'a::idom)] %^ n) \ poly [])" +lemma poly_exp_prime_eq_zero [simp]: "poly ([a, (1::'a::idom)] %^ n) \ poly []" by auto text{*A more constructive notion of polynomials being trivial*} @@ -437,8 +441,10 @@ "poly (h # t) = poly [] \ h = (0::'a::{idom,ring_char_0}) & poly t = poly []" apply (simp add: fun_eq) apply (case_tac "h = 0") - apply (drule_tac [2] x = 0 in spec, auto) - apply (case_tac "poly t = poly []", simp) + apply (drule_tac [2] x = 0 in spec) + apply auto + apply (case_tac "poly t = poly []") + apply simp proof - fix x assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" and pnz: "poly t \ poly []" @@ -450,7 +456,7 @@ show "poly t x = (0\'a)" by simp qed -lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p" +lemma poly_zero: "poly p = poly [] \ list_all (\c. c = (0::'a::{idom,ring_char_0})) p" apply (induct p) apply simp apply (rule iffI) @@ -461,7 +467,7 @@ text{*Basics of divisibility.*} -lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)" +lemma poly_primes: "[a, (1::'a::idom)] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) apply (drule_tac x = "-a" in spec) apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) @@ -477,7 +483,8 @@ done lemma poly_divides_trans: "p divides q \ q divides r \ p divides r" - apply (simp add: divides_def, safe) + apply (simp add: divides_def) + apply safe apply (rule_tac x = "qa *** qaa" in exI) apply (auto simp add: poly_mult fun_eq mult_assoc) done @@ -495,25 +502,26 @@ by (blast intro: poly_divides_exp poly_divides_trans) lemma poly_divides_add: "p divides q \ p divides r \ p divides (q +++ r)" - apply (simp add: divides_def, auto) + apply (simp add: divides_def) + apply auto apply (rule_tac x = "qa +++ qaa" in exI) apply (auto simp add: poly_add fun_eq poly_mult distrib_left) done lemma poly_divides_diff: "p divides q \ p divides (q +++ r) \ p divides r" - apply (simp add: divides_def, auto) + apply (auto simp add: divides_def) apply (rule_tac x = "qaa +++ -- qa" in exI) apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps) done -lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q" +lemma poly_divides_diff2: "p divides r \ p divides (q +++ r) \ p divides q" apply (erule poly_divides_diff) apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) done -lemma poly_divides_zero: "poly p = poly [] ==> q divides p" +lemma poly_divides_zero: "poly p = poly [] \ q divides p" apply (simp add: divides_def) - apply (rule exI[where x="[]"]) + apply (rule exI [where x = "[]"]) apply (auto simp add: fun_eq poly_mult) done @@ -525,33 +533,40 @@ text{*At last, we can consider the order of a root.*} - lemma poly_order_exists_lemma [rule_format]: "\p. length p = d \ poly p \ poly [] \ (\n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \ 0)" apply (induct "d") - apply (simp add: fun_eq, safe) + apply (simp add: fun_eq) + apply safe apply (case_tac "poly p a = 0") - apply (drule_tac poly_linear_divides [THEN iffD1], safe) + apply (drule_tac poly_linear_divides [THEN iffD1]) + apply safe apply (drule_tac x = q in spec) - apply (drule_tac poly_entire_neg [THEN iffD1], safe, force) + apply (drule_tac poly_entire_neg [THEN iffD1]) + apply safe + apply force apply (rule_tac x = "Suc n" in exI) apply (rule_tac x = qa in exI) apply (simp del: pmult_Cons) - apply (rule_tac x = 0 in exI, force) + apply (rule_tac x = 0 in exI) + apply force done (* FIXME: Tidy up *) lemma poly_order_exists: - "[| length p = d; poly p \ poly [] |] - ==> \n. ([-a, 1] %^ n) divides p & - ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)" - apply (drule poly_order_exists_lemma [where a=a], assumption, clarify) - apply (rule_tac x = n in exI, safe) + "length p = d \ poly p \ poly [] \ + \n. ([-a, 1] %^ n) divides p \ \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)" + apply (drule poly_order_exists_lemma [where a=a]) + apply assumption + apply clarify + apply (rule_tac x = n in exI) + apply safe apply (unfold divides_def) apply (rule_tac x = q in exI) - apply (induct_tac n, simp) - apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult distrib_left mult_ac) + apply (induct_tac n) + apply simp + apply (simp add: poly_add poly_cmult poly_mult distrib_left mult_ac) apply safe apply (subgoal_tac "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** qa)") apply simp @@ -567,19 +582,18 @@ lemma poly_one_divides [simp]: "[1] divides p" by (auto simp: divides_def) -lemma poly_order: "poly p \ poly [] - ==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & - ~(([-a, 1] %^ (Suc n)) divides p)" +lemma poly_order: "poly p \ poly [] \ + \! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p)" apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) apply (cut_tac x = y and y = n in less_linear) apply (drule_tac m = n in poly_exp_divides) apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] - simp del: pmult_Cons pexp_Suc) + simp del: pmult_Cons pexp_Suc) done text{*Order*} -lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n" +lemma some1_equalityD: "n = (SOME n. P n) \ EX! n. P n \ P n" by (blast intro: someI2) lemma order: @@ -597,14 +611,14 @@ ~(([-a, 1] %^ (Suc(order a p))) divides p)" by (simp add: order del: pexp_Suc) -lemma order_unique: "[| poly p \ poly []; ([-a, 1] %^ n) divides p; - ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) - |] ==> (n = order a p)" +lemma order_unique: "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ + \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) \ n = order a p" using order [of a n p] by auto -lemma order_unique_lemma: "(poly p \ poly [] & ([-a, 1] %^ n) divides p & - ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) - ==> (n = order a p)" +lemma order_unique_lemma: + "(poly p \ poly [] \ ([-a, 1] %^ n) divides p \ + \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) \ + n = order a p" by (blast intro: order_unique) lemma order_poly: "poly p = poly q ==> order a p = order a q" @@ -613,40 +627,44 @@ lemma pexp_one [simp]: "p %^ (Suc 0) = p" by (induct p) simp_all -lemma lemma_order_root [rule_format]: - "\p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p - --> poly p a = 0" - apply (induct n) +lemma lemma_order_root: + "0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" + apply (induct n arbitrary: p a) apply blast apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) done -lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \ 0)" - apply (case_tac "poly p = poly []", auto) - apply (simp add: poly_linear_divides del: pmult_Cons, safe) +lemma order_root: "poly p a = (0::'a::{idom,ring_char_0}) \ poly p = poly [] \ order a p \ 0" + apply (cases "poly p = poly []") + apply auto + apply (simp add: poly_linear_divides del: pmult_Cons) + apply safe apply (drule_tac [!] a = a in order2) apply (rule ccontr) - apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) - using neq0_conv - apply (blast intro: lemma_order_root) + apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons) + apply blast + using neq0_conv apply (blast intro: lemma_order_root) done -lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \ order a p)" - apply (case_tac "poly p = poly []", auto) +lemma order_divides: "([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p \ + poly p = poly [] \ n \ order a p" + apply (cases "poly p = poly []") + apply auto apply (simp add: divides_def fun_eq poly_mult) apply (rule_tac x = "[]" in exI) - apply (auto dest!: order2 [where a=a] - intro: poly_exp_divides simp del: pexp_Suc) + apply (auto dest!: order2 [where a = a] intro: poly_exp_divides simp del: pexp_Suc) done lemma order_decomp: "poly p \ poly [] \ - \q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & - ~([-a, 1::'a::{idom,ring_char_0}] divides q)" + \q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \ + \ ([-a, 1::'a::{idom,ring_char_0}] divides q)" apply (unfold divides_def) apply (drule order2 [where a = a]) - apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) - apply (rule_tac x = q in exI, safe) + apply (simp add: divides_def del: pexp_Suc pmult_Cons) + apply safe + apply (rule_tac x = q in exI) + apply safe apply (drule_tac x = qa in spec) apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) done @@ -659,25 +677,29 @@ apply (auto simp add: poly_entire simp del: pmult_Cons) apply (drule_tac a = a in order2)+ apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) + apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons) + apply safe apply (rule_tac x = "qa *** qaa" in exI) apply (simp add: poly_mult mult_ac del: pmult_Cons) apply (drule_tac a = a in order_decomp)+ apply safe - apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") + apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ") apply (simp add: poly_primes del: pmult_Cons) apply (auto simp add: divides_def simp del: pmult_Cons) apply (rule_tac x = qb in exI) - apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") - apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = + poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") + apply (drule poly_mult_left_cancel [THEN iffD1]) + apply force + apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = + poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") + apply (drule poly_mult_left_cancel [THEN iffD1]) + apply force apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) done -lemma order_root2: "poly p \ poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \ 0)" - by (rule order_root [THEN ssubst], auto) - +lemma order_root2: "poly p \ poly [] \ poly p a = 0 \ order (a::'a::{idom,ring_char_0}) p \ 0" + by (rule order_root [THEN ssubst]) auto lemma pmult_one [simp]: "[1] *** p = p" by auto @@ -686,17 +708,20 @@ by (simp add: fun_eq) lemma rsquarefree_decomp: - "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |] - ==> \q. (poly p = poly ([-a, 1] *** q)) & poly q a \ 0" - apply (simp add: rsquarefree_def, safe) + "rsquarefree p \ poly p a = (0::'a::{idom,ring_char_0}) \ + \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0" + apply (simp add: rsquarefree_def) + apply safe apply (frule_tac a = a in order_decomp) apply (drule_tac x = a in spec) apply (drule_tac a = a in order_root2 [symmetric]) apply (auto simp del: pmult_Cons) - apply (rule_tac x = q in exI, safe) + apply (rule_tac x = q in exI) + apply safe apply (simp add: poly_mult fun_eq) apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) - apply (simp add: divides_def del: pmult_Cons, safe) + apply (simp add: divides_def del: pmult_Cons) + apply safe apply (drule_tac x = "[]" in spec) apply (auto simp add: fun_eq) done @@ -710,45 +735,55 @@ text{*The degree of a polynomial.*} -lemma lemma_degree_zero: "list_all (%c. c = 0) p \ pnormalize p = []" +lemma lemma_degree_zero: "list_all (\c. c = 0) p \ pnormalize p = []" by (induct p) auto -lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \ (degree p = 0)" +lemma degree_zero: "poly p = poly ([] :: 'a::{idom,ring_char_0} list) \ degree p = 0" + apply (cases "pnormalize p = []") apply (simp add: degree_def) - apply (case_tac "pnormalize p = []") - apply (auto simp add: poly_zero lemma_degree_zero ) + apply (auto simp add: poly_zero lemma_degree_zero) done -lemma pnormalize_sing: "(pnormalize [x] = [x]) \ x \ 0" by simp +lemma pnormalize_sing: "pnormalize [x] = [x] \ x \ 0" + by simp -lemma pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" by simp +lemma pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" + by simp -lemma pnormal_cons: "pnormal p \ pnormal (c#p)" +lemma pnormal_cons: "pnormal p \ pnormal (c # p)" unfolding pnormal_def by simp -lemma pnormal_tail: "p\[] \ pnormal (c#p) \ pnormal p" +lemma pnormal_tail: "p \ [] \ pnormal (c # p) \ pnormal p" unfolding pnormal_def - apply (cases "pnormalize p = []", auto) - apply (cases "c = 0", auto) + apply (cases "pnormalize p = []") + apply auto + apply (cases "c = 0") + apply auto done -lemma pnormal_last_nonzero: "pnormal p ==> last p \ 0" - apply (induct p, auto simp add: pnormal_def) - apply (case_tac "pnormalize p = []", auto) - apply (case_tac "a=0", auto) +lemma pnormal_last_nonzero: "pnormal p \ last p \ 0" + apply (induct p) + apply (auto simp add: pnormal_def) + apply (case_tac "pnormalize p = []") + apply auto + apply (case_tac "a = 0") + apply auto done lemma pnormal_length: "pnormal p \ 0 < length p" unfolding pnormal_def length_greater_0_conv by blast -lemma pnormal_last_length: "\0 < length p ; last p \ 0\ \ pnormal p" - apply (induct p, auto) - apply (case_tac "p = []", auto) +lemma pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p" + apply (induct p) + apply auto + apply (case_tac "p = []") + apply auto apply (simp add: pnormal_def) - apply (rule pnormal_cons, auto) + apply (rule pnormal_cons) + apply auto done -lemma pnormal_id: "pnormal p \ (0 < length p \ last p \ 0)" +lemma pnormal_id: "pnormal p \ 0 < length p \ last p \ 0" using pnormal_last_length pnormal_length pnormal_last_nonzero by blast text{*Tidier versions of finiteness of roots.*} @@ -759,13 +794,15 @@ text{*bound for polynomial.*} -lemma poly_mono: "abs(x) \ k ==> abs(poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" - apply (induct "p", auto) +lemma poly_mono: "abs x \ k \ abs (poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" + apply (induct p) + apply auto apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) apply (rule abs_triangle_ineq) apply (auto intro!: mult_mono simp add: abs_mult) done -lemma poly_Sing: "poly [c] x = c" by simp +lemma poly_Sing: "poly [c] x = c" + by simp end