# HG changeset patch # User lcp # Date 749839763 -3600 # Node ID 4ec9b266ccd19ba9decbd698df0bd9ac520f9a47 # Parent b429d6a658ae06f2d1f8ffb257f15bbc2cbe252f Modification of examples for the new operators, < and le. diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/BT_Fn.ML --- a/src/ZF/ex/BT_Fn.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/BT_Fn.ML Tue Oct 05 17:49:23 1993 +0100 @@ -12,11 +12,11 @@ (** bt_rec -- by Vset recursion **) -goalw BT.thy BT.con_defs "rank(l) : rank(Br(a,l,r))"; +goalw BT.thy BT.con_defs "rank(l) < rank(Br(a,l,r))"; by (simp_tac rank_ss 1); val rank_Br1 = result(); -goalw BT.thy BT.con_defs "rank(r) : rank(Br(a,l,r))"; +goalw BT.thy BT.con_defs "rank(r) < rank(Br(a,l,r))"; by (simp_tac rank_ss 1); val rank_Br2 = result(); @@ -28,8 +28,7 @@ goal BT_Fn.thy "bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))"; by (rtac (bt_rec_def RS def_Vrec RS trans) 1); -by (simp_tac (ZF_ss addsimps - (BT.case_eqns @ [Vset_rankI, rank_Br1, rank_Br2])) 1); +by (simp_tac (rank_ss addsimps (BT.case_eqns @ [rank_Br1, rank_Br2])) 1); val bt_rec_Br = result(); (*Type checking -- proved by induction, as usual*) diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/Integ.ML --- a/src/ZF/ex/Integ.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/Integ.ML Tue Oct 05 17:49:23 1993 +0100 @@ -175,19 +175,18 @@ goalw Integ.thy [znegative_def, znat_def] "~ znegative($# n)"; by (safe_tac intrel_cs); -by (rtac (add_not_less_self RS notE) 1); +by (rtac (add_le_self2 RS le_imp_not_lt RS notE) 1); by (etac ssubst 3); by (asm_simp_tac (arith_ss addsimps [add_0_right]) 3); by (REPEAT (assume_tac 1)); val not_znegative_znat = result(); -val [nnat] = goalw Integ.thy [znegative_def, znat_def] - "n: nat ==> znegative($~ $# succ(n))"; -by (simp_tac (intrel_ss addsimps [zminus,nnat]) 1); +goalw Integ.thy [znegative_def, znat_def] + "!!n. n: nat ==> znegative($~ $# succ(n))"; +by (asm_simp_tac (intrel_ss addsimps [zminus]) 1); by (REPEAT - (resolve_tac [refl, exI, conjI, nat_0_in_succ, - refl RS intrelI RS imageI, consI1, nnat, nat_0I, - nat_succI] 1)); + (ares_tac [refl, exI, conjI, nat_0_le, + refl RS intrelI RS imageI, consI1, nat_0I, nat_succI] 1)); val znegative_zminus_znat = result(); @@ -227,14 +226,14 @@ (ZF_ss addsimps (prems@[zmagnitude_ize UN_equiv_class, SigmaI])) 1); val zmagnitude = result(); -val [nnat] = goalw Integ.thy [znat_def] - "n: nat ==> zmagnitude($# n) = n"; -by (simp_tac (intrel_ss addsimps [zmagnitude,nnat]) 1); +goalw Integ.thy [znat_def] + "!!n. n: nat ==> zmagnitude($# n) = n"; +by (asm_simp_tac (intrel_ss addsimps [zmagnitude]) 1); val zmagnitude_znat = result(); -val [nnat] = goalw Integ.thy [znat_def] - "n: nat ==> zmagnitude($~ $# n) = n"; -by (simp_tac (intrel_ss addsimps [zmagnitude,zminus,nnat,add_0_right]) 1); +goalw Integ.thy [znat_def] + "!!n. n: nat ==> zmagnitude($~ $# n) = n"; +by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus ,add_0_right]) 1); val zmagnitude_zminus_znat = result(); diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/Integ.thy --- a/src/ZF/ex/Integ.thy Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/Integ.thy Tue Oct 05 17:49:23 1993 +0100 @@ -33,7 +33,7 @@ zminus_def "$~ Z == UN p:Z. split(%x y. intrel``{}, p)" znegative_def - "znegative(Z) == EX x y. x:y & y:nat & :Z" + "znegative(Z) == EX x y. x:Z" zmagnitude_def "zmagnitude(Z) == UN p:Z. split(%x y. (y#-x) #+ (x#-y), p)" diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/Primrec0.ML --- a/src/ZF/ex/Primrec0.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/Primrec0.ML Tue Oct 05 17:49:23 1993 +0100 @@ -127,76 +127,72 @@ ack_type, naturals_are_ordinals]; (*PROPERTY A 4*) -goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j : ack(i,j)"; +goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j < ack(i,j)"; by (etac nat_induct 1); by (asm_simp_tac ack_ss 1); by (rtac ballI 1); by (eres_inst_tac [("n","j")] nat_induct 1); -by (ALLGOALS (asm_simp_tac ack_ss)); -by (rtac ([succI1, asm_rl,naturals_are_ordinals] MRS Ord_trans) 1); -by (rtac (succ_mem_succI RS Ord_trans1) 3); -by (etac bspec 5); -by (ALLGOALS (asm_simp_tac ack_ss)); -val less_ack2_lemma = result(); -val less_ack2 = standard (less_ack2_lemma RS bspec); +by (DO_GOAL [rtac (nat_0I RS nat_0_le RS lt_trans), + asm_simp_tac ack_ss] 1); +by (DO_GOAL [etac (succ_leI RS lt_trans1), + asm_simp_tac ack_ss] 1); +val lt_ack2_lemma = result(); +val lt_ack2 = standard (lt_ack2_lemma RS bspec); (*PROPERTY A 5-, the single-step lemma*) -goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(i, succ(j))"; +goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(i, succ(j))"; by (etac nat_induct 1); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [less_ack2]))); -val ack_less_ack_succ2 = result(); +by (ALLGOALS (asm_simp_tac (ack_ss addsimps [lt_ack2]))); +val ack_lt_ack_succ2 = result(); (*PROPERTY A 5, monotonicity for < *) -goal Primrec.thy "!!i j k. [| j:k; i:nat; k:nat |] ==> ack(i,j) : ack(i,k)"; -by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1); +goal Primrec.thy "!!i j k. [| j ack(i,j) < ack(i,k)"; +by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1); +by (etac succ_lt_induct 1); by (assume_tac 1); -by (etac succ_less_induct 1); -by (assume_tac 1); -by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2); -by (REPEAT (ares_tac ([ack_less_ack_succ2, ack_type] @ pr0_typechecks) 1)); -val ack_less_mono2 = result(); +by (rtac lt_trans 2); +by (REPEAT (ares_tac ([ack_lt_ack_succ2, ack_type] @ pr0_typechecks) 1)); +val ack_lt_mono2 = result(); (*PROPERTY A 5', monotonicity for <= *) goal Primrec.thy - "!!i j k. [| j<=k; i:nat; j:nat; k:nat |] ==> ack(i,j) <= ack(i,k)"; -by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_less_mono_imp_mono 1); -by (REPEAT (ares_tac [ack_less_mono2, ack_type, Ord_nat] 1)); -val ack_mono2 = result(); + "!!i j k. [| j le k; i: nat; k:nat |] ==> ack(i,j) le ack(i,k)"; +by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_lt_mono_imp_le_mono 1); +by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS naturals_are_ordinals] 1)); +val ack_le_mono2 = result(); (*PROPERTY A 6*) goal Primrec.thy - "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) <= ack(succ(i), j)"; + "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) le ack(succ(i), j)"; by (nat_ind_tac "j" [] 1); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [subset_refl]))); -by (rtac ack_mono2 1); -by (rtac (less_ack2 RS Ord_succ_subsetI RS subset_trans) 1); -by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type] @ pr0_typechecks) 1)); -val ack2_leq_ack1 = result(); +by (ALLGOALS (asm_simp_tac ack_ss)); +by (rtac ack_le_mono2 1); +by (rtac (lt_ack2 RS succ_leI RS le_trans) 1); +by (REPEAT (ares_tac (ack_typechecks) 1)); +val ack2_le_ack1 = result(); (*PROPERTY A 7-, the single-step lemma*) -goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(succ(i),j)"; -by (rtac (ack_less_mono2 RS Ord_trans2) 1); -by (rtac (ack2_leq_ack1 RS member_succI) 4); -by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type, succI1] @ - pr0_typechecks) 1)); -val ack_less_ack_succ1 = result(); +goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(succ(i),j)"; +by (rtac (ack_lt_mono2 RS lt_trans2) 1); +by (rtac ack2_le_ack1 4); +by (REPEAT (ares_tac ([nat_le_refl, ack_type] @ pr0_typechecks) 1)); +val ack_lt_ack_succ1 = result(); (*PROPERTY A 7, monotonicity for < *) -goal Primrec.thy "!!i j k. [| i:j; j:nat; k:nat |] ==> ack(i,k) : ack(j,k)"; -by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1); -by (assume_tac 1); -by (etac succ_less_induct 1); +goal Primrec.thy "!!i j k. [| i ack(i,k) < ack(j,k)"; +by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1); +by (etac succ_lt_induct 1); by (assume_tac 1); -by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2); -by (REPEAT (ares_tac ([ack_less_ack_succ1, ack_type] @ pr0_typechecks) 1)); -val ack_less_mono1 = result(); +by (rtac lt_trans 2); +by (REPEAT (ares_tac ([ack_lt_ack_succ1, ack_type] @ pr0_typechecks) 1)); +val ack_lt_mono1 = result(); -(*PROPERTY A 7', monotonicity for <= *) +(*PROPERTY A 7', monotonicity for le *) goal Primrec.thy - "!!i j k. [| i<=j; i:nat; j:nat; k:nat |] ==> ack(i,k) <= ack(j,k)"; -by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_less_mono_imp_mono 1); -by (REPEAT (ares_tac [ack_less_mono1, ack_type, Ord_nat] 1)); -val ack_mono1 = result(); + "!!i j k. [| i le j; j:nat; k:nat |] ==> ack(i,k) le ack(j,k)"; +by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_lt_mono_imp_le_mono 1); +by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS naturals_are_ordinals] 1)); +val ack_le_mono1 = result(); (*PROPERTY A 8*) goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))"; @@ -213,44 +209,36 @@ (*PROPERTY A 10*) goal Primrec.thy "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \ -\ ack(i1, ack(i2,j)) : ack(succ(succ(i1#+i2)), j)"; -by (rtac Ord_trans2 1); -by (rtac (ack2_leq_ack1 RS member_succI) 2); +\ ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)"; +by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1); by (asm_simp_tac ack_ss 1); -by (rtac ([ack_mono1 RS member_succI, ack_less_mono2] MRS Ord_trans1) 1); -by (rtac add_leq_self 1); -by (tc_tac []); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_less_succ_self RS ack_less_mono1) 3); +by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1); +by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 5); by (tc_tac []); val ack_nest_bound = result(); (*PROPERTY A 11*) goal Primrec.thy - "!!i1 i2. [| i1:nat; i2:nat |] ==> \ -\ EX k:nat. ALL j:nat. ack(i1,j) #+ ack(i2,j) : ack(k,j)"; -by (rtac (Ord_trans RS ballI RS bexI) 1); -by (res_inst_tac [("i1.0", "succ(1)"), ("i2.0", "i1#+i2")] ack_nest_bound 2); -by (rtac (ack_2 RS ssubst) 1); -by (tc_tac []); -by (rtac (member_succI RS succI2 RS succI2) 1); -by (rtac (add_leq_self RS ack_mono1 RS add_mono) 1); -by (tc_tac []); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_leq_self RS ack_mono1) 3); -by (tc_tac []); + "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \ +\ ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)"; +by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1); +by (asm_simp_tac (ack_ss addsimps [ack_2]) 1); +by (rtac (ack_nest_bound RS lt_trans2) 2); +by (asm_simp_tac ack_ss 5); +by (rtac (add_le_mono RS leI RS leI) 1); +by (REPEAT (ares_tac ([add_le_self, add_le_self2, ack_le_mono1] @ + ack_typechecks) 1)); val ack_add_bound = result(); -(*PROPERTY A 12 -- note quantifier nesting - Article uses existential quantifier but the ALF proof used a concrete - expression, namely k#+4. *) +(*PROPERTY A 12. Article uses existential quantifier but the ALF proof + used k#+4. Quantified version must be nested EX k'. ALL i,j... *) goal Primrec.thy - "!!k. k: nat ==> \ -\ EX k':nat. ALL i:nat. ALL j:nat. i : ack(k,j) --> i#+j : ack(k',j)"; -by (res_inst_tac [("i1.1", "k"), ("i2.1", "0")] (ack_add_bound RS bexE) 1); -by (rtac (Ord_trans RS impI RS ballI RS ballI RS bexI) 3); -by (etac bspec 4); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [add_less_mono]))); + "!!i j k. [| i < ack(k,j); j:nat; k:nat |] ==> \ +\ i#+j < ack(succ(succ(succ(succ(k)))), j)"; +by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1); +by (rtac (ack_add_bound RS lt_trans2) 2); +by (asm_simp_tac (ack_ss addsimps [add_0_right]) 5); +by (REPEAT (ares_tac ([add_lt_mono, lt_ack2] @ ack_typechecks) 1)); val ack_add_bound2 = result(); (*** MAIN RESULT ***) @@ -260,41 +248,38 @@ naturals_are_ordinals]; goalw Primrec.thy [SC_def] - "!!l. l: list(nat) ==> SC ` l : ack(1, list_add(l))"; + "!!l. l: list(nat) ==> SC ` l < ack(1, list_add(l))"; by (etac List.elim 1); by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1); -by (asm_simp_tac (ack2_ss addsimps - [ack_1, add_less_succ_self RS succ_mem_succI]) 1); +by (asm_simp_tac (ack2_ss addsimps [ack_1, add_le_self]) 1); val SC_case = result(); -(*PROPERTY A 4'?? Extra lemma needed for CONST case, constant functions*) -goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i : ack(i,j)"; +(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*) +goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i < ack(i,j)"; by (etac nat_induct 1); -by (asm_simp_tac (ack_ss addsimps [nat_0_in_succ]) 1); -by (etac ([succ_mem_succI, ack_less_ack_succ1] MRS Ord_trans1) 1); +by (asm_simp_tac (ack_ss addsimps [nat_0_le]) 1); +by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1); by (tc_tac []); -val less_ack1 = result(); +val lt_ack1 = result(); goalw Primrec.thy [CONST_def] - "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l : ack(k, list_add(l))"; -by (asm_simp_tac (ack2_ss addsimps [less_ack1]) 1); + "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l < ack(k, list_add(l))"; +by (asm_simp_tac (ack2_ss addsimps [lt_ack1]) 1); val CONST_case = result(); goalw Primrec.thy [PROJ_def] - "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l : ack(0, list_add(l))"; + "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l < ack(0, list_add(l))"; by (asm_simp_tac ack2_ss 1); by (etac List.induct 1); -by (asm_simp_tac (ack2_ss addsimps [nat_0_in_succ]) 1); +by (asm_simp_tac (ack2_ss addsimps [nat_0_le]) 1); by (asm_simp_tac ack2_ss 1); by (rtac ballI 1); by (eres_inst_tac [("n","x")] natE 1); -by (asm_simp_tac (ack2_ss addsimps [add_less_succ_self]) 1); +by (asm_simp_tac (ack2_ss addsimps [add_le_self]) 1); by (asm_simp_tac ack2_ss 1); -by (etac (bspec RS Ord_trans2) 1); -by (assume_tac 1); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_less_succ_self RS succ_mem_succI) 3); -by (tc_tac [list_add_type]); +by (etac (bspec RS lt_trans2) 1); +by (rtac (add_le_self2 RS succ_leI) 2); +by (tc_tac []); val PROJ_case_lemma = result(); val PROJ_case = PROJ_case_lemma RS bspec; @@ -303,98 +288,91 @@ goal Primrec.thy "!!fs. fs : list({f: primrec . \ \ EX kf:nat. ALL l:list(nat). \ -\ f`l : ack(kf, list_add(l))}) \ +\ f`l < ack(kf, list_add(l))}) \ \ ==> EX k:nat. ALL l: list(nat). \ -\ list_add(map(%f. f ` l, fs)) : ack(k, list_add(l))"; +\ list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))"; by (etac List.induct 1); by (DO_GOAL [res_inst_tac [("x","0")] bexI, - asm_simp_tac (ack2_ss addsimps [less_ack1,nat_0_in_succ]), + asm_simp_tac (ack2_ss addsimps [lt_ack1, nat_0_le]), resolve_tac nat_typechecks] 1); by (safe_tac ZF_cs); by (asm_simp_tac ack2_ss 1); -by (res_inst_tac [("i1.1", "kf"), ("i2.1", "k")] (ack_add_bound RS bexE) 1 - THEN REPEAT (assume_tac 1)); by (rtac (ballI RS bexI) 1); -by (etac (bspec RS add_less_mono RS Ord_trans) 1); +by (rtac (add_lt_mono RS lt_trans) 1); by (REPEAT (FIRSTGOAL (etac bspec))); -by (tc_tac [list_add_type]); +by (rtac ack_add_bound 5); +by (tc_tac []); val COMP_map_lemma = result(); goalw Primrec.thy [COMP_def] "!!g. [| g: primrec; kg: nat; \ -\ ALL l:list(nat). g`l : ack(kg, list_add(l)); \ +\ ALL l:list(nat). g`l < ack(kg, list_add(l)); \ \ fs : list({f: primrec . \ \ EX kf:nat. ALL l:list(nat). \ -\ f`l : ack(kf, list_add(l))}) \ -\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l : ack(k, list_add(l))"; +\ f`l < ack(kf, list_add(l))}) \ +\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l < ack(k, list_add(l))"; by (asm_simp_tac ZF_ss 1); by (forward_tac [list_CollectD] 1); by (etac (COMP_map_lemma RS bexE) 1); by (rtac (ballI RS bexI) 1); -by (etac (bspec RS Ord_trans) 1); -by (rtac Ord_trans 2); +by (etac (bspec RS lt_trans) 1); +by (rtac lt_trans 2); by (rtac ack_nest_bound 3); -by (etac (bspec RS ack_less_mono2) 2); +by (etac (bspec RS ack_lt_mono2) 2); by (tc_tac [map_type]); val COMP_case = result(); (** PREC case **) goalw Primrec.thy [PREC_def] - "!!f g. [| f: primrec; kf: nat; \ + "!!f g. [| ALL l:list(nat). f`l #+ list_add(l) < ack(kf, list_add(l)); \ +\ ALL l:list(nat). g`l #+ list_add(l) < ack(kg, list_add(l)); \ +\ f: primrec; kf: nat; \ \ g: primrec; kg: nat; \ -\ ALL l:list(nat). f`l #+ list_add(l) : ack(kf, list_add(l)); \ -\ ALL l:list(nat). g`l #+ list_add(l) : ack(kg, list_add(l)); \ \ l: list(nat) \ -\ |] ==> PREC(f,g)`l #+ list_add(l) : ack(succ(kf#+kg), list_add(l))"; +\ |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))"; by (etac List.elim 1); -by (asm_simp_tac (ack2_ss addsimps [[succI1, less_ack2] MRS Ord_trans]) 1); +by (asm_simp_tac (ack2_ss addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1); by (asm_simp_tac ack2_ss 1); be ssubst 1; (*get rid of the needless assumption*) by (eres_inst_tac [("n","a")] nat_induct 1); -by (asm_simp_tac ack2_ss 1); -by (rtac Ord_trans 1); -by (etac bspec 1); -by (assume_tac 1); -by (rtac ack_less_mono1 1); -by (rtac add_less_succ_self 1); -by (tc_tac [list_add_type]); -(*ind step -- level 13*) +(*base case*) +by (DO_GOAL [asm_simp_tac ack2_ss, rtac lt_trans, etac bspec, + assume_tac, rtac (add_le_self RS ack_lt_mono1), + REPEAT o ares_tac (ack_typechecks)] 1); +(*ind step*) by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1); -by (rtac (succ_mem_succI RS Ord_trans1) 1); -by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] Ord_trans1 1); +by (rtac (succ_leI RS lt_trans1) 1); +by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1); by (etac bspec 2); -by (rtac (subset_refl RS add_mono RS member_succI) 1); +by (rtac (nat_le_refl RS add_le_mono) 1); by (tc_tac []); -by (asm_simp_tac (ack2_ss addsimps [add_leq_self2]) 1); -by (asm_simp_tac ack2_ss 1); +by (asm_simp_tac (ack2_ss addsimps [add_le_self2]) 1); (*final part of the simplification*) -by (rtac (member_succI RS Ord_trans1) 1); -by (rtac (add_leq_self2 RS ack_mono1) 1); -by (etac ack_less_mono2 8); +by (asm_simp_tac ack2_ss 1); +by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1); +by (etac ack_lt_mono2 5); by (tc_tac []); val PREC_case_lemma = result(); goal Primrec.thy "!!f g. [| f: primrec; kf: nat; \ \ g: primrec; kg: nat; \ -\ ALL l:list(nat). f`l : ack(kf, list_add(l)); \ -\ ALL l:list(nat). g`l : ack(kg, list_add(l)) \ +\ ALL l:list(nat). f`l < ack(kf, list_add(l)); \ +\ ALL l:list(nat). g`l < ack(kg, list_add(l)) \ \ |] ==> EX k:nat. ALL l: list(nat). \ -\ PREC(f,g)`l: ack(k, list_add(l))"; -by (etac (ack_add_bound2 RS bexE) 1); -by (etac (ack_add_bound2 RS bexE) 1); +\ PREC(f,g)`l< ack(k, list_add(l))"; by (rtac (ballI RS bexI) 1); -by (rtac ([add_leq_self RS member_succI, PREC_case_lemma] MRS Ord_trans1) 1); -by (DEPTH_SOLVE +by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1); +by (REPEAT (SOMEGOAL (FIRST' [test_assume_tac, - match_tac (ballI::ack_typechecks), - eresolve_tac [bspec, bspec RS bspec RS mp]]))); + match_tac (ack_typechecks), + rtac (ack_add_bound2 RS ballI) THEN' etac bspec]))); val PREC_case = result(); goal Primrec.thy - "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l : ack(k, list_add(l))"; + "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l < ack(k, list_add(l))"; by (etac Primrec.induct 1); by (safe_tac ZF_cs); by (DEPTH_SOLVE @@ -406,7 +384,7 @@ "~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec"; by (rtac notI 1); by (etac (ack_bounds_primrec RS bexE) 1); -by (rtac mem_anti_refl 1); +by (rtac lt_anti_refl 1); by (dres_inst_tac [("x", "[x]")] bspec 1); by (asm_simp_tac ack2_ss 1); by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1); diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/TermFn.ML --- a/src/ZF/ex/TermFn.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/TermFn.ML Tue Oct 05 17:49:23 1993 +0100 @@ -16,13 +16,13 @@ (*Lemma: map works correctly on the underlying list of terms*) val [major,ordi] = goal ListFn.thy "[| l: list(A); Ord(i) |] ==> \ -\ rank(l): i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)"; +\ rank(l) map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)"; by (rtac (major RS List.induct) 1); by (simp_tac list_ss 1); by (rtac impI 1); -by (forward_tac [rank_Cons1 RS Ord_trans] 1); -by (dtac (rank_Cons2 RS Ord_trans) 2); -by (ALLGOALS (asm_simp_tac (list_ss addsimps [ordi, VsetI]))); +by (forward_tac [rank_Cons1 RS lt_trans] 1); +by (dtac (rank_Cons2 RS lt_trans) 1); +by (asm_simp_tac (list_ss addsimps [ordi, VsetI]) 1); val map_lemma = result(); (*Typing premise is necessary to invoke map_lemma*) diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/bt_fn.ML --- a/src/ZF/ex/bt_fn.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/bt_fn.ML Tue Oct 05 17:49:23 1993 +0100 @@ -12,11 +12,11 @@ (** bt_rec -- by Vset recursion **) -goalw BT.thy BT.con_defs "rank(l) : rank(Br(a,l,r))"; +goalw BT.thy BT.con_defs "rank(l) < rank(Br(a,l,r))"; by (simp_tac rank_ss 1); val rank_Br1 = result(); -goalw BT.thy BT.con_defs "rank(r) : rank(Br(a,l,r))"; +goalw BT.thy BT.con_defs "rank(r) < rank(Br(a,l,r))"; by (simp_tac rank_ss 1); val rank_Br2 = result(); @@ -28,8 +28,7 @@ goal BT_Fn.thy "bt_rec(Br(a,l,r), c, h) = h(a, l, r, bt_rec(l,c,h), bt_rec(r,c,h))"; by (rtac (bt_rec_def RS def_Vrec RS trans) 1); -by (simp_tac (ZF_ss addsimps - (BT.case_eqns @ [Vset_rankI, rank_Br1, rank_Br2])) 1); +by (simp_tac (rank_ss addsimps (BT.case_eqns @ [rank_Br1, rank_Br2])) 1); val bt_rec_Br = result(); (*Type checking -- proved by induction, as usual*) diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/integ.ML --- a/src/ZF/ex/integ.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/integ.ML Tue Oct 05 17:49:23 1993 +0100 @@ -175,19 +175,18 @@ goalw Integ.thy [znegative_def, znat_def] "~ znegative($# n)"; by (safe_tac intrel_cs); -by (rtac (add_not_less_self RS notE) 1); +by (rtac (add_le_self2 RS le_imp_not_lt RS notE) 1); by (etac ssubst 3); by (asm_simp_tac (arith_ss addsimps [add_0_right]) 3); by (REPEAT (assume_tac 1)); val not_znegative_znat = result(); -val [nnat] = goalw Integ.thy [znegative_def, znat_def] - "n: nat ==> znegative($~ $# succ(n))"; -by (simp_tac (intrel_ss addsimps [zminus,nnat]) 1); +goalw Integ.thy [znegative_def, znat_def] + "!!n. n: nat ==> znegative($~ $# succ(n))"; +by (asm_simp_tac (intrel_ss addsimps [zminus]) 1); by (REPEAT - (resolve_tac [refl, exI, conjI, nat_0_in_succ, - refl RS intrelI RS imageI, consI1, nnat, nat_0I, - nat_succI] 1)); + (ares_tac [refl, exI, conjI, nat_0_le, + refl RS intrelI RS imageI, consI1, nat_0I, nat_succI] 1)); val znegative_zminus_znat = result(); @@ -227,14 +226,14 @@ (ZF_ss addsimps (prems@[zmagnitude_ize UN_equiv_class, SigmaI])) 1); val zmagnitude = result(); -val [nnat] = goalw Integ.thy [znat_def] - "n: nat ==> zmagnitude($# n) = n"; -by (simp_tac (intrel_ss addsimps [zmagnitude,nnat]) 1); +goalw Integ.thy [znat_def] + "!!n. n: nat ==> zmagnitude($# n) = n"; +by (asm_simp_tac (intrel_ss addsimps [zmagnitude]) 1); val zmagnitude_znat = result(); -val [nnat] = goalw Integ.thy [znat_def] - "n: nat ==> zmagnitude($~ $# n) = n"; -by (simp_tac (intrel_ss addsimps [zmagnitude,zminus,nnat,add_0_right]) 1); +goalw Integ.thy [znat_def] + "!!n. n: nat ==> zmagnitude($~ $# n) = n"; +by (asm_simp_tac (intrel_ss addsimps [zmagnitude, zminus ,add_0_right]) 1); val zmagnitude_zminus_znat = result(); diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/integ.thy --- a/src/ZF/ex/integ.thy Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/integ.thy Tue Oct 05 17:49:23 1993 +0100 @@ -33,7 +33,7 @@ zminus_def "$~ Z == UN p:Z. split(%x y. intrel``{}, p)" znegative_def - "znegative(Z) == EX x y. x:y & y:nat & :Z" + "znegative(Z) == EX x y. x:Z" zmagnitude_def "zmagnitude(Z) == UN p:Z. split(%x y. (y#-x) #+ (x#-y), p)" diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/primrec0.ML --- a/src/ZF/ex/primrec0.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/primrec0.ML Tue Oct 05 17:49:23 1993 +0100 @@ -127,76 +127,72 @@ ack_type, naturals_are_ordinals]; (*PROPERTY A 4*) -goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j : ack(i,j)"; +goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j < ack(i,j)"; by (etac nat_induct 1); by (asm_simp_tac ack_ss 1); by (rtac ballI 1); by (eres_inst_tac [("n","j")] nat_induct 1); -by (ALLGOALS (asm_simp_tac ack_ss)); -by (rtac ([succI1, asm_rl,naturals_are_ordinals] MRS Ord_trans) 1); -by (rtac (succ_mem_succI RS Ord_trans1) 3); -by (etac bspec 5); -by (ALLGOALS (asm_simp_tac ack_ss)); -val less_ack2_lemma = result(); -val less_ack2 = standard (less_ack2_lemma RS bspec); +by (DO_GOAL [rtac (nat_0I RS nat_0_le RS lt_trans), + asm_simp_tac ack_ss] 1); +by (DO_GOAL [etac (succ_leI RS lt_trans1), + asm_simp_tac ack_ss] 1); +val lt_ack2_lemma = result(); +val lt_ack2 = standard (lt_ack2_lemma RS bspec); (*PROPERTY A 5-, the single-step lemma*) -goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(i, succ(j))"; +goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(i, succ(j))"; by (etac nat_induct 1); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [less_ack2]))); -val ack_less_ack_succ2 = result(); +by (ALLGOALS (asm_simp_tac (ack_ss addsimps [lt_ack2]))); +val ack_lt_ack_succ2 = result(); (*PROPERTY A 5, monotonicity for < *) -goal Primrec.thy "!!i j k. [| j:k; i:nat; k:nat |] ==> ack(i,j) : ack(i,k)"; -by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1); +goal Primrec.thy "!!i j k. [| j ack(i,j) < ack(i,k)"; +by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1); +by (etac succ_lt_induct 1); by (assume_tac 1); -by (etac succ_less_induct 1); -by (assume_tac 1); -by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2); -by (REPEAT (ares_tac ([ack_less_ack_succ2, ack_type] @ pr0_typechecks) 1)); -val ack_less_mono2 = result(); +by (rtac lt_trans 2); +by (REPEAT (ares_tac ([ack_lt_ack_succ2, ack_type] @ pr0_typechecks) 1)); +val ack_lt_mono2 = result(); (*PROPERTY A 5', monotonicity for <= *) goal Primrec.thy - "!!i j k. [| j<=k; i:nat; j:nat; k:nat |] ==> ack(i,j) <= ack(i,k)"; -by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_less_mono_imp_mono 1); -by (REPEAT (ares_tac [ack_less_mono2, ack_type, Ord_nat] 1)); -val ack_mono2 = result(); + "!!i j k. [| j le k; i: nat; k:nat |] ==> ack(i,j) le ack(i,k)"; +by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_lt_mono_imp_le_mono 1); +by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS naturals_are_ordinals] 1)); +val ack_le_mono2 = result(); (*PROPERTY A 6*) goal Primrec.thy - "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) <= ack(succ(i), j)"; + "!!i j. [| i:nat; j:nat |] ==> ack(i, succ(j)) le ack(succ(i), j)"; by (nat_ind_tac "j" [] 1); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [subset_refl]))); -by (rtac ack_mono2 1); -by (rtac (less_ack2 RS Ord_succ_subsetI RS subset_trans) 1); -by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type] @ pr0_typechecks) 1)); -val ack2_leq_ack1 = result(); +by (ALLGOALS (asm_simp_tac ack_ss)); +by (rtac ack_le_mono2 1); +by (rtac (lt_ack2 RS succ_leI RS le_trans) 1); +by (REPEAT (ares_tac (ack_typechecks) 1)); +val ack2_le_ack1 = result(); (*PROPERTY A 7-, the single-step lemma*) -goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) : ack(succ(i),j)"; -by (rtac (ack_less_mono2 RS Ord_trans2) 1); -by (rtac (ack2_leq_ack1 RS member_succI) 4); -by (REPEAT (ares_tac ([naturals_are_ordinals, ack_type, succI1] @ - pr0_typechecks) 1)); -val ack_less_ack_succ1 = result(); +goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(succ(i),j)"; +by (rtac (ack_lt_mono2 RS lt_trans2) 1); +by (rtac ack2_le_ack1 4); +by (REPEAT (ares_tac ([nat_le_refl, ack_type] @ pr0_typechecks) 1)); +val ack_lt_ack_succ1 = result(); (*PROPERTY A 7, monotonicity for < *) -goal Primrec.thy "!!i j k. [| i:j; j:nat; k:nat |] ==> ack(i,k) : ack(j,k)"; -by (forward_tac [Ord_nat RSN (3,Ord_trans)] 1); -by (assume_tac 1); -by (etac succ_less_induct 1); +goal Primrec.thy "!!i j k. [| i ack(i,k) < ack(j,k)"; +by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1); +by (etac succ_lt_induct 1); by (assume_tac 1); -by (rtac (naturals_are_ordinals RSN (3,Ord_trans)) 2); -by (REPEAT (ares_tac ([ack_less_ack_succ1, ack_type] @ pr0_typechecks) 1)); -val ack_less_mono1 = result(); +by (rtac lt_trans 2); +by (REPEAT (ares_tac ([ack_lt_ack_succ1, ack_type] @ pr0_typechecks) 1)); +val ack_lt_mono1 = result(); -(*PROPERTY A 7', monotonicity for <= *) +(*PROPERTY A 7', monotonicity for le *) goal Primrec.thy - "!!i j k. [| i<=j; i:nat; j:nat; k:nat |] ==> ack(i,k) <= ack(j,k)"; -by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_less_mono_imp_mono 1); -by (REPEAT (ares_tac [ack_less_mono1, ack_type, Ord_nat] 1)); -val ack_mono1 = result(); + "!!i j k. [| i le j; j:nat; k:nat |] ==> ack(i,k) le ack(j,k)"; +by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_lt_mono_imp_le_mono 1); +by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS naturals_are_ordinals] 1)); +val ack_le_mono1 = result(); (*PROPERTY A 8*) goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))"; @@ -213,44 +209,36 @@ (*PROPERTY A 10*) goal Primrec.thy "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \ -\ ack(i1, ack(i2,j)) : ack(succ(succ(i1#+i2)), j)"; -by (rtac Ord_trans2 1); -by (rtac (ack2_leq_ack1 RS member_succI) 2); +\ ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)"; +by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1); by (asm_simp_tac ack_ss 1); -by (rtac ([ack_mono1 RS member_succI, ack_less_mono2] MRS Ord_trans1) 1); -by (rtac add_leq_self 1); -by (tc_tac []); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_less_succ_self RS ack_less_mono1) 3); +by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1); +by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 5); by (tc_tac []); val ack_nest_bound = result(); (*PROPERTY A 11*) goal Primrec.thy - "!!i1 i2. [| i1:nat; i2:nat |] ==> \ -\ EX k:nat. ALL j:nat. ack(i1,j) #+ ack(i2,j) : ack(k,j)"; -by (rtac (Ord_trans RS ballI RS bexI) 1); -by (res_inst_tac [("i1.0", "succ(1)"), ("i2.0", "i1#+i2")] ack_nest_bound 2); -by (rtac (ack_2 RS ssubst) 1); -by (tc_tac []); -by (rtac (member_succI RS succI2 RS succI2) 1); -by (rtac (add_leq_self RS ack_mono1 RS add_mono) 1); -by (tc_tac []); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_leq_self RS ack_mono1) 3); -by (tc_tac []); + "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \ +\ ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)"; +by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1); +by (asm_simp_tac (ack_ss addsimps [ack_2]) 1); +by (rtac (ack_nest_bound RS lt_trans2) 2); +by (asm_simp_tac ack_ss 5); +by (rtac (add_le_mono RS leI RS leI) 1); +by (REPEAT (ares_tac ([add_le_self, add_le_self2, ack_le_mono1] @ + ack_typechecks) 1)); val ack_add_bound = result(); -(*PROPERTY A 12 -- note quantifier nesting - Article uses existential quantifier but the ALF proof used a concrete - expression, namely k#+4. *) +(*PROPERTY A 12. Article uses existential quantifier but the ALF proof + used k#+4. Quantified version must be nested EX k'. ALL i,j... *) goal Primrec.thy - "!!k. k: nat ==> \ -\ EX k':nat. ALL i:nat. ALL j:nat. i : ack(k,j) --> i#+j : ack(k',j)"; -by (res_inst_tac [("i1.1", "k"), ("i2.1", "0")] (ack_add_bound RS bexE) 1); -by (rtac (Ord_trans RS impI RS ballI RS ballI RS bexI) 3); -by (etac bspec 4); -by (ALLGOALS (asm_simp_tac (ack_ss addsimps [add_less_mono]))); + "!!i j k. [| i < ack(k,j); j:nat; k:nat |] ==> \ +\ i#+j < ack(succ(succ(succ(succ(k)))), j)"; +by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1); +by (rtac (ack_add_bound RS lt_trans2) 2); +by (asm_simp_tac (ack_ss addsimps [add_0_right]) 5); +by (REPEAT (ares_tac ([add_lt_mono, lt_ack2] @ ack_typechecks) 1)); val ack_add_bound2 = result(); (*** MAIN RESULT ***) @@ -260,41 +248,38 @@ naturals_are_ordinals]; goalw Primrec.thy [SC_def] - "!!l. l: list(nat) ==> SC ` l : ack(1, list_add(l))"; + "!!l. l: list(nat) ==> SC ` l < ack(1, list_add(l))"; by (etac List.elim 1); by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1); -by (asm_simp_tac (ack2_ss addsimps - [ack_1, add_less_succ_self RS succ_mem_succI]) 1); +by (asm_simp_tac (ack2_ss addsimps [ack_1, add_le_self]) 1); val SC_case = result(); -(*PROPERTY A 4'?? Extra lemma needed for CONST case, constant functions*) -goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i : ack(i,j)"; +(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*) +goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i < ack(i,j)"; by (etac nat_induct 1); -by (asm_simp_tac (ack_ss addsimps [nat_0_in_succ]) 1); -by (etac ([succ_mem_succI, ack_less_ack_succ1] MRS Ord_trans1) 1); +by (asm_simp_tac (ack_ss addsimps [nat_0_le]) 1); +by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1); by (tc_tac []); -val less_ack1 = result(); +val lt_ack1 = result(); goalw Primrec.thy [CONST_def] - "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l : ack(k, list_add(l))"; -by (asm_simp_tac (ack2_ss addsimps [less_ack1]) 1); + "!!l. [| l: list(nat); k: nat |] ==> CONST(k) ` l < ack(k, list_add(l))"; +by (asm_simp_tac (ack2_ss addsimps [lt_ack1]) 1); val CONST_case = result(); goalw Primrec.thy [PROJ_def] - "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l : ack(0, list_add(l))"; + "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l < ack(0, list_add(l))"; by (asm_simp_tac ack2_ss 1); by (etac List.induct 1); -by (asm_simp_tac (ack2_ss addsimps [nat_0_in_succ]) 1); +by (asm_simp_tac (ack2_ss addsimps [nat_0_le]) 1); by (asm_simp_tac ack2_ss 1); by (rtac ballI 1); by (eres_inst_tac [("n","x")] natE 1); -by (asm_simp_tac (ack2_ss addsimps [add_less_succ_self]) 1); +by (asm_simp_tac (ack2_ss addsimps [add_le_self]) 1); by (asm_simp_tac ack2_ss 1); -by (etac (bspec RS Ord_trans2) 1); -by (assume_tac 1); -by (rtac (add_commute RS ssubst) 1); -by (rtac (add_less_succ_self RS succ_mem_succI) 3); -by (tc_tac [list_add_type]); +by (etac (bspec RS lt_trans2) 1); +by (rtac (add_le_self2 RS succ_leI) 2); +by (tc_tac []); val PROJ_case_lemma = result(); val PROJ_case = PROJ_case_lemma RS bspec; @@ -303,98 +288,91 @@ goal Primrec.thy "!!fs. fs : list({f: primrec . \ \ EX kf:nat. ALL l:list(nat). \ -\ f`l : ack(kf, list_add(l))}) \ +\ f`l < ack(kf, list_add(l))}) \ \ ==> EX k:nat. ALL l: list(nat). \ -\ list_add(map(%f. f ` l, fs)) : ack(k, list_add(l))"; +\ list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))"; by (etac List.induct 1); by (DO_GOAL [res_inst_tac [("x","0")] bexI, - asm_simp_tac (ack2_ss addsimps [less_ack1,nat_0_in_succ]), + asm_simp_tac (ack2_ss addsimps [lt_ack1, nat_0_le]), resolve_tac nat_typechecks] 1); by (safe_tac ZF_cs); by (asm_simp_tac ack2_ss 1); -by (res_inst_tac [("i1.1", "kf"), ("i2.1", "k")] (ack_add_bound RS bexE) 1 - THEN REPEAT (assume_tac 1)); by (rtac (ballI RS bexI) 1); -by (etac (bspec RS add_less_mono RS Ord_trans) 1); +by (rtac (add_lt_mono RS lt_trans) 1); by (REPEAT (FIRSTGOAL (etac bspec))); -by (tc_tac [list_add_type]); +by (rtac ack_add_bound 5); +by (tc_tac []); val COMP_map_lemma = result(); goalw Primrec.thy [COMP_def] "!!g. [| g: primrec; kg: nat; \ -\ ALL l:list(nat). g`l : ack(kg, list_add(l)); \ +\ ALL l:list(nat). g`l < ack(kg, list_add(l)); \ \ fs : list({f: primrec . \ \ EX kf:nat. ALL l:list(nat). \ -\ f`l : ack(kf, list_add(l))}) \ -\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l : ack(k, list_add(l))"; +\ f`l < ack(kf, list_add(l))}) \ +\ |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l < ack(k, list_add(l))"; by (asm_simp_tac ZF_ss 1); by (forward_tac [list_CollectD] 1); by (etac (COMP_map_lemma RS bexE) 1); by (rtac (ballI RS bexI) 1); -by (etac (bspec RS Ord_trans) 1); -by (rtac Ord_trans 2); +by (etac (bspec RS lt_trans) 1); +by (rtac lt_trans 2); by (rtac ack_nest_bound 3); -by (etac (bspec RS ack_less_mono2) 2); +by (etac (bspec RS ack_lt_mono2) 2); by (tc_tac [map_type]); val COMP_case = result(); (** PREC case **) goalw Primrec.thy [PREC_def] - "!!f g. [| f: primrec; kf: nat; \ + "!!f g. [| ALL l:list(nat). f`l #+ list_add(l) < ack(kf, list_add(l)); \ +\ ALL l:list(nat). g`l #+ list_add(l) < ack(kg, list_add(l)); \ +\ f: primrec; kf: nat; \ \ g: primrec; kg: nat; \ -\ ALL l:list(nat). f`l #+ list_add(l) : ack(kf, list_add(l)); \ -\ ALL l:list(nat). g`l #+ list_add(l) : ack(kg, list_add(l)); \ \ l: list(nat) \ -\ |] ==> PREC(f,g)`l #+ list_add(l) : ack(succ(kf#+kg), list_add(l))"; +\ |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))"; by (etac List.elim 1); -by (asm_simp_tac (ack2_ss addsimps [[succI1, less_ack2] MRS Ord_trans]) 1); +by (asm_simp_tac (ack2_ss addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1); by (asm_simp_tac ack2_ss 1); be ssubst 1; (*get rid of the needless assumption*) by (eres_inst_tac [("n","a")] nat_induct 1); -by (asm_simp_tac ack2_ss 1); -by (rtac Ord_trans 1); -by (etac bspec 1); -by (assume_tac 1); -by (rtac ack_less_mono1 1); -by (rtac add_less_succ_self 1); -by (tc_tac [list_add_type]); -(*ind step -- level 13*) +(*base case*) +by (DO_GOAL [asm_simp_tac ack2_ss, rtac lt_trans, etac bspec, + assume_tac, rtac (add_le_self RS ack_lt_mono1), + REPEAT o ares_tac (ack_typechecks)] 1); +(*ind step*) by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1); -by (rtac (succ_mem_succI RS Ord_trans1) 1); -by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] Ord_trans1 1); +by (rtac (succ_leI RS lt_trans1) 1); +by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1); by (etac bspec 2); -by (rtac (subset_refl RS add_mono RS member_succI) 1); +by (rtac (nat_le_refl RS add_le_mono) 1); by (tc_tac []); -by (asm_simp_tac (ack2_ss addsimps [add_leq_self2]) 1); -by (asm_simp_tac ack2_ss 1); +by (asm_simp_tac (ack2_ss addsimps [add_le_self2]) 1); (*final part of the simplification*) -by (rtac (member_succI RS Ord_trans1) 1); -by (rtac (add_leq_self2 RS ack_mono1) 1); -by (etac ack_less_mono2 8); +by (asm_simp_tac ack2_ss 1); +by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1); +by (etac ack_lt_mono2 5); by (tc_tac []); val PREC_case_lemma = result(); goal Primrec.thy "!!f g. [| f: primrec; kf: nat; \ \ g: primrec; kg: nat; \ -\ ALL l:list(nat). f`l : ack(kf, list_add(l)); \ -\ ALL l:list(nat). g`l : ack(kg, list_add(l)) \ +\ ALL l:list(nat). f`l < ack(kf, list_add(l)); \ +\ ALL l:list(nat). g`l < ack(kg, list_add(l)) \ \ |] ==> EX k:nat. ALL l: list(nat). \ -\ PREC(f,g)`l: ack(k, list_add(l))"; -by (etac (ack_add_bound2 RS bexE) 1); -by (etac (ack_add_bound2 RS bexE) 1); +\ PREC(f,g)`l< ack(k, list_add(l))"; by (rtac (ballI RS bexI) 1); -by (rtac ([add_leq_self RS member_succI, PREC_case_lemma] MRS Ord_trans1) 1); -by (DEPTH_SOLVE +by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1); +by (REPEAT (SOMEGOAL (FIRST' [test_assume_tac, - match_tac (ballI::ack_typechecks), - eresolve_tac [bspec, bspec RS bspec RS mp]]))); + match_tac (ack_typechecks), + rtac (ack_add_bound2 RS ballI) THEN' etac bspec]))); val PREC_case = result(); goal Primrec.thy - "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l : ack(k, list_add(l))"; + "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l < ack(k, list_add(l))"; by (etac Primrec.induct 1); by (safe_tac ZF_cs); by (DEPTH_SOLVE @@ -406,7 +384,7 @@ "~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec"; by (rtac notI 1); by (etac (ack_bounds_primrec RS bexE) 1); -by (rtac mem_anti_refl 1); +by (rtac lt_anti_refl 1); by (dres_inst_tac [("x", "[x]")] bspec 1); by (asm_simp_tac ack2_ss 1); by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1); diff -r b429d6a658ae -r 4ec9b266ccd1 src/ZF/ex/termfn.ML --- a/src/ZF/ex/termfn.ML Tue Oct 05 17:27:05 1993 +0100 +++ b/src/ZF/ex/termfn.ML Tue Oct 05 17:49:23 1993 +0100 @@ -16,13 +16,13 @@ (*Lemma: map works correctly on the underlying list of terms*) val [major,ordi] = goal ListFn.thy "[| l: list(A); Ord(i) |] ==> \ -\ rank(l): i --> map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)"; +\ rank(l) map(%z. (lam x:Vset(i).h(x)) ` z, l) = map(h,l)"; by (rtac (major RS List.induct) 1); by (simp_tac list_ss 1); by (rtac impI 1); -by (forward_tac [rank_Cons1 RS Ord_trans] 1); -by (dtac (rank_Cons2 RS Ord_trans) 2); -by (ALLGOALS (asm_simp_tac (list_ss addsimps [ordi, VsetI]))); +by (forward_tac [rank_Cons1 RS lt_trans] 1); +by (dtac (rank_Cons2 RS lt_trans) 1); +by (asm_simp_tac (list_ss addsimps [ordi, VsetI]) 1); val map_lemma = result(); (*Typing premise is necessary to invoke map_lemma*)