# HG changeset patch # User lcp # Date 796643729 -7200 # Node ID 4ef4f7ff2aebacfcd4d972cf06ba6db02cc7e8df # Parent 547931cbbf085c97c8d99326a1394522479551cd New example of AC Equivalences by Krzysztof Grabczewski diff -r 547931cbbf08 -r 4ef4f7ff2aeb src/ZF/AC/OrdQuant.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/AC/OrdQuant.thy Fri Mar 31 11:55:29 1995 +0200 @@ -0,0 +1,39 @@ +(* Title: ZF/AC/OrdQuant.thy + ID: $Id$ + Author: Krzysztof Gr`abczewski + +Quantifiers and union operator for ordinals. +*) + +OrdQuant = Ordinal + + +consts + + (* Ordinal Quantifiers *) + Oall, Oex :: "[i, i => o] => o" + (* General Union and Intersection *) + OUnion :: "[i, i => i] => i" + +syntax + + "@OUNION" :: "[idt, i, i] => i" ("(3UN _<_./ _)" 10) + "@Oall" :: "[idt, i, o] => o" ("(3ALL _<_./ _)" 10) + "@Oex" :: "[idt, i, o] => o" ("(3EX _<_./ _)" 10) + +translations + + "UN x (EX x P(x)" + Oex_def "Oex(A, P) == EX x. x transrec2(i,a,b) = (UN ji] =>i" + +defs + + transrec2_def "transrec2(alpha, a, b) == \ +\ transrec(alpha, %i r. if(i=0, \ +\ a, if(EX j. i=succ(j), \ +\ b(THE j. i=succ(j), r`(THE j. i=succ(j))), \ +\ UN j WO1". + +From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin, +pages 2-5 +*) + +(* ********************************************************************** *) +(* The most complicated part of the proof - lemma ii - p. 2-4 *) +(* ********************************************************************** *) + +(* ********************************************************************** *) +(* some properties of relation uu(beta, gamma, delta) - p. 2 *) +(* ********************************************************************** *) + +goalw thy [uu_def] "domain(uu(f,b,g,d)) <= f`b"; +by (fast_tac ZF_cs 1); +val domain_uu_subset = result(); + +goal thy "!!a. [| ALL b domain(uu(f, b, g, d)) lepoll m"; +by (fast_tac (AC_cs addSEs + [domain_uu_subset RS subset_imp_lepoll RS lepoll_trans]) 1); +val domain_uu_lepoll_m = result(); + +goal thy "!! a. ALL b \ +\ ALL b uu(f,b,g,d) lepoll m"; +by (fast_tac (AC_cs + addSEs [uu_subset2 RS subset_imp_lepoll RS lepoll_trans]) 1); +val uu_lepoll_m = result(); + +(* ********************************************************************** *) +(* Two cases for lemma ii *) +(* ********************************************************************** *) +goalw thy [lesspoll_def] + "!! a f u. ALL b \ +\ (ALL b (EX g \ +\ u(f,b,g,d) eqpoll m))"; +by (fast_tac AC_cs 1); +val cases = result(); + +(* ********************************************************************** *) +(* Lemmas used in both cases *) +(* ********************************************************************** *) +goal thy "!!a f. Ord(a) ==> (UN b P(b)=Q(b)) ==> (UN b b = (THE l. l B Un (A-B) = A"; +by (fast_tac (ZF_cs addSIs [equalityI]) 1); +val subset_imp_Un_Diff_eq = result(); + +(* ********************************************************************** *) +(* Case 1 : lemmas *) +(* ********************************************************************** *) + +goalw thy [vv1_def] "vv1(f,b,succ(m)) <= f`b"; +by (resolve_tac [expand_if RS iffD2] 1); +by (fast_tac (ZF_cs addSIs [domain_uu_subset]) 1); +val vv1_subset = result(); + +(* ********************************************************************** *) +(* Case 1 : Union of images is the whole "y" *) +(* ********************************************************************** *) +goal thy "!! a f y. [| (UN b \ +\ (UN b P(Least_a, LEAST b. P(Least_a, b))"; +by (eresolve_tac [ssubst] 1); +by (res_inst_tac [("Q","%z. P(z, LEAST b. P(z, b))")] LeastI2 1); +by (REPEAT (fast_tac (ZF_cs addSEs [LeastI]) 1)); +val nested_LeastI = result(); + +val nested_Least_instance = read_instantiate + [("P","%g d. domain(uu(f,b,g,d)) ~= 0 & \ +\ domain(uu(f,b,g,d)) lesspoll succ(m)")] nested_LeastI; + +goalw thy [vv1_def] "!!a. [| ALL b \ +\ (EX g vv1(f,b,succ(m)) lesspoll succ(m)"; +by (resolve_tac [expand_if RS iffD2] 1); +by (fast_tac (AC_cs addIs [nested_Least_instance RS conjunct2] + addSEs [lt_Ord] + addSIs [empty_lepollI RS lepoll_imp_lesspoll_succ]) 1); +val vv1_lesspoll_succ = result(); + +goalw thy [vv1_def] "!!a. [| ALL b \ +\ (EX g vv1(f,b,succ(m)) ~= 0"; +by (resolve_tac [expand_if RS iffD2] 1); +by (resolve_tac [conjI] 1); +by (fast_tac ZF_cs 2); +by (resolve_tac [impI] 1); +by (eresolve_tac [oallE] 1); +by (mp_tac 1); +by (contr_tac 2); +by (REPEAT (eresolve_tac [oexE] 1)); +by (asm_simp_tac (ZF_ss + addsimps [lt_Ord, nested_Least_instance RS conjunct1]) 1); +val vv1_not_0 = result(); + +goalw thy [ww1_def] "!!a. [| ALL b \ +\ (EX g ww1(f,b,succ(m)) lesspoll succ(m)"; +by (excluded_middle_tac "f`b = 0" 1); +by (asm_full_simp_tac (AC_ss + addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2); +by (resolve_tac [Diff_lepoll RS lepoll_imp_lesspoll_succ] 1); +by (fast_tac AC_cs 1); +by (REPEAT (ares_tac [vv1_subset, vv1_not_0] 1)); +val ww1_lesspoll_succ = result(); + +goal thy "!!a. [| Ord(a); m:nat; \ +\ ALL b (EX g ALL b EX d uu(f,b,g,LEAST d. (uu(f,b,g,d) ~= 0)) ~= 0"; +by (dresolve_tac [ex_d_uu_not_empty] 1 THEN (REPEAT (atac 1))); +by (fast_tac (AC_cs addSEs [LeastI, lt_Ord]) 1); +val uu_not_empty = result(); + +(* moved from ZF_aux.ML *) +goal thy "!!r. [| r<=A*B; r~=0 |] ==> domain(r)~=0"; +by (REPEAT (eresolve_tac [asm_rl, not_emptyE, subsetD RS SigmaE, + sym RSN (2, subst_elem) RS domainI RS not_emptyI] 1)); +val not_empty_rel_imp_domain = result(); + +goal thy "!!f. [| b (LEAST d. uu(f,b,g,d) ~= 0) < a"; +by (eresolve_tac [ex_d_uu_not_empty RS oexE] 1 + THEN (REPEAT (atac 1))); +by (resolve_tac [Least_le RS lt_trans1] 1 + THEN (REPEAT (ares_tac [lt_Ord] 1))); +val Least_uu_not_empty_lt_a = result(); + +goal thy "!!B. [| B<=A; a~:B |] ==> B <= A-{a}"; +by (fast_tac ZF_cs 1); +val subset_Diff_sing = result(); + +goal thy "!!A B. [| A lepoll m; m lepoll B; B <= A; m:nat |] ==> A=B"; +by (eresolve_tac [natE] 1); +by (fast_tac (AC_cs addSDs [lepoll_0_is_0] addSIs [equalityI]) 1); +by (hyp_subst_tac 1); +by (resolve_tac [equalityI] 1); +by (atac 2); +by (resolve_tac [subsetI] 1); +by (excluded_middle_tac "?P" 1 THEN (atac 2)); +by (eresolve_tac [subset_Diff_sing RS subset_imp_lepoll RSN (2, + diff_sing_lepoll RSN (3, lepoll_trans RS lepoll_trans)) RS + succ_lepoll_natE] 1 + THEN (REPEAT (atac 1))); +val supset_lepoll_imp_eq = result(); + +goalw thy [vv2_def] + "!!a. [| ALL g \ +\ domain(uu(f, b, g, d)) eqpoll succ(m); \ +\ ALL b uu(f,b,g,LEAST d. uu(f,b,g,d)~=0) : f`b -> f`g"; +by (eres_inst_tac [("x","g")] oallE 1 THEN (contr_tac 2)); +by (eres_inst_tac [("P","%z. ?QQ(z) ~= 0 --> ?RR(z)")] oallE 1); +by (eresolve_tac [impE] 1); +by (eresolve_tac [uu_not_empty RS (uu_subset1 RS + not_empty_rel_imp_domain)] 1 + THEN (REPEAT (atac 1))); +by (eresolve_tac [Least_uu_not_empty_lt_a RSN (2, notE)] 2 + THEN (TRYALL atac)); +by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS + (Least_uu_not_empty_lt_a RSN (2, uu_lepoll_m) RSN (2, + uu_subset1 RSN (4, rel_is_fun)))] 1 + THEN (TRYALL atac)); +by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RSN (2, + supset_lepoll_imp_eq)] 1); +by (REPEAT (fast_tac (AC_cs addSIs [domain_uu_subset, nat_succI]) 1)); +val uu_Least_is_fun = result(); + +goalw thy [vv2_def] + "!!a. [| ALL g \ +\ domain(uu(f, b, g, d)) eqpoll succ(m); \ +\ ALL b vv2(f,b,g,aa) <= f`g"; +by (fast_tac (FOL_cs addIs [expand_if RS iffD2] + addSEs [uu_Least_is_fun] + addSIs [empty_subsetI, not_emptyI, + singleton_subsetI, apply_type]) 1); +val vv2_subset = result(); + +(* ********************************************************************** *) +(* Case 2 : Union of images is the whole "y" *) +(* ********************************************************************** *) +goal thy "!!a. [| ALL g \ +\ domain(uu(f,b,g,d)) eqpoll succ(m); \ +\ ALL b (UN g vv2(f,b,g,aa) lesspoll succ(m)"; +by (resolve_tac [conjI RS (expand_if RS iffD2)] 1); +by (asm_simp_tac (AC_ss + addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2); +by (fast_tac (AC_cs + addSDs [le_imp_subset RS subset_imp_lepoll RS lepoll_0_is_0] + addSIs [singleton_eqpoll_1 RS eqpoll_imp_lepoll RS + lepoll_trans RS lepoll_imp_lesspoll_succ, + not_lt_imp_le RS le_imp_subset RS subset_imp_lepoll, + nat_into_Ord, nat_1I]) 1); +val vv2_lesspoll_succ = result(); + +goalw thy [ww2_def] "!!m. [| ALL b ww2(f,b,g,d) lesspoll succ(m)"; +by (excluded_middle_tac "f`g = 0" 1); +by (asm_simp_tac (AC_ss + addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2); +by (dresolve_tac [ospec] 1 THEN (atac 1)); +by (resolve_tac [Diff_lepoll RS lepoll_imp_lesspoll_succ] 1 + THEN (TRYALL atac)); +by (asm_simp_tac (AC_ss addsimps [vv2_def, expand_if, not_emptyI]) 1); +val ww2_lesspoll_succ = result(); + +goal thy "!!a. [| ALL g \ +\ domain(uu(f,b,g,d)) eqpoll succ(m); \ +\ ALL b ALL ba m : NN(y)"; +by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1)); +by (resolve_tac [quant_domain_uu_lepoll_m RS cases RS disjE] 1 + THEN (atac 1)); +(* case 1 *) +by (resolve_tac [CollectI] 1); +by (atac 1); +by (res_inst_tac [("x","a ++ a")] exI 1); +by (res_inst_tac [("x","lam b:a++a. if (b f(n)<=f(m)"; +by (res_inst_tac [("P","n le m")] impE 1 THEN (REPEAT (atac 2))); +by (res_inst_tac [("P","%z. n le z --> f(n) <= f(z)")] nat_induct 1); +by (REPEAT (fast_tac lt_cs 1)); +val le_subsets = result(); + +goal thy "!!n m. [| n le m; m:nat |] ==> \ +\ rec(n, x, %k r. r Un r*r) <= rec(m, x, %k r. r Un r*r)"; +by (resolve_tac [z_n_subset_z_succ_n RS le_subsets] 1 + THEN (TRYALL atac)); +by (eresolve_tac [Ord_nat RSN (2, ltI) RSN (2, lt_trans1) RS ltD] 1 + THEN (atac 1)); +val le_imp_rec_subset = result(); + +goal thy "!!x. EX y. x Un y*y <= y"; +by (res_inst_tac [("x","UN n:nat. rec(n, x, %k r. r Un r*r)")] exI 1); +by (resolve_tac [subsetI] 1); +by (eresolve_tac [UnE] 1); +by (resolve_tac [UN_I] 1); +by (eresolve_tac [rec_0 RS ssubst] 2); +by (resolve_tac [nat_0I] 1); +by (eresolve_tac [SigmaE] 1); +by (REPEAT (eresolve_tac [UN_E] 1)); +by (res_inst_tac [("a","succ(n Un na)")] UN_I 1); +by (eresolve_tac [Un_nat_type RS nat_succI] 1 THEN (atac 1)); +by (resolve_tac [rec_succ RS ssubst] 1); +by (fast_tac (ZF_cs addIs [le_imp_rec_subset RS subsetD] + addSIs [Un_upper1_le, Un_upper2_le, Un_nat_type] + addSEs [nat_into_Ord]) 1); +val lemma_iv = result(); + +(* ********************************************************************** *) +(* Rubin & Rubin wrote : *) +(* "It follows from (ii) and mathematical induction that if y*y <= y then *) +(* y can be well-ordered" *) + +(* In fact we have to prove : *) +(* * WO6 ==> NN(y) ~= 0 *) +(* * reverse induction which lets us infer that 1 : NN(y) *) +(* * 1 : NN(y) ==> y can be well-ordered *) +(* ********************************************************************** *) + +(* ********************************************************************** *) +(* WO6 ==> NN(y) ~= 0 *) +(* ********************************************************************** *) + +goalw thy [WO6_def, NN_def] "!!y. WO6 ==> NN(y) ~= 0"; +by (eresolve_tac [allE] 1); +by (fast_tac (ZF_cs addSIs [not_emptyI]) 1); +val WO6_imp_NN_not_empty = result(); + +(* ********************************************************************** *) +(* 1 : NN(y) ==> y can be well-ordered *) +(* ********************************************************************** *) + +goal thy "!!f. [| (UN b EX c f` (LEAST i. f`i = {x}) = {x}"; +by (dresolve_tac [lemma1] 1 THEN (REPEAT (atac 1))); +by (fast_tac (AC_cs addSEs [lt_Ord] addIs [LeastI]) 1); +val lemma2 = result(); + +goalw thy [NN_def] "!!y. 1 : NN(y) ==> EX a f. Ord(a) & f:inj(y, a)"; +by (eresolve_tac [CollectE] 1); +by (REPEAT (eresolve_tac [exE, conjE] 1)); +by (res_inst_tac [("x","a")] exI 1); +by (res_inst_tac [("x","lam x:y. LEAST i. f`i = {x}")] exI 1); +by (resolve_tac [conjI] 1 THEN (atac 1)); +by (res_inst_tac [("d","%i. THE x. x:f`i")] lam_injective 1); +by (dresolve_tac [lemma1] 1 THEN (REPEAT (atac 1))); +by (fast_tac (AC_cs addSEs [Least_le RS lt_trans1 RS ltD, lt_Ord]) 1); +by (resolve_tac [lemma2 RS ssubst] 1 THEN (REPEAT (atac 1))); +by (fast_tac (ZF_cs addSIs [the_equality]) 1); +val NN_imp_ex_inj = result(); + +goal thy "!!y. [| y*y <= y; 1 : NN(y) |] ==> EX r. well_ord(y, r)"; +by (dresolve_tac [NN_imp_ex_inj] 1); +by (fast_tac (ZF_cs addSEs [well_ord_Memrel RSN (2, well_ord_rvimage)]) 1); +val y_well_ord = result(); + +(* ********************************************************************** *) +(* reverse induction which lets us infer that 1 : NN(y) *) +(* ********************************************************************** *) + +val [prem1, prem2] = goal thy + "[| n:nat; !!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |] \ +\ ==> n~=0 --> P(n) --> P(1)"; +by (res_inst_tac [("n","n")] nat_induct 1); +by (resolve_tac [prem1] 1); +by (fast_tac ZF_cs 1); +by (excluded_middle_tac "x=0" 1); +by (fast_tac ZF_cs 2); +by (fast_tac (ZF_cs addSIs [prem2]) 1); +val rev_induct_lemma = result(); + +val prems = goal thy + "[| P(n); n:nat; n~=0; \ +\ !!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |] \ +\ ==> P(1)"; +by (resolve_tac [rev_induct_lemma RS impE] 1); +by (eresolve_tac [impE] 4 THEN (atac 5)); +by (REPEAT (ares_tac prems 1)); +val rev_induct = result(); + +goalw thy [NN_def] "!!n. n:NN(y) ==> n:nat"; +by (fast_tac ZF_cs 1); +val NN_into_nat = result(); + +goal thy "!!n. [| n:NN(y); y*y <= y; n~=0 |] ==> 1:NN(y)"; +by (resolve_tac [rev_induct] 1 THEN (REPEAT (ares_tac [NN_into_nat] 1))); +by (resolve_tac [lemma_ii] 1 THEN (REPEAT (atac 1))); +val lemma3 = result(); + +(* ********************************************************************** *) +(* Main theorem "WO6 ==> WO1" *) +(* ********************************************************************** *) + +(* another helpful lemma *) +goalw thy [NN_def] "!!y. 0:NN(y) ==> y=0"; +by (fast_tac (AC_cs addSIs [equalityI] + addSDs [lepoll_0_is_0] addEs [subst]) 1); +val NN_y_0 = result(); + +goalw thy [WO1_def] "!!Z. WO6 ==> WO1"; +by (resolve_tac [allI] 1); +by (excluded_middle_tac "A=0" 1); +by (fast_tac (ZF_cs addSIs [well_ord_Memrel, nat_0I RS nat_into_Ord]) 2); +by (res_inst_tac [("x1","A")] (lemma_iv RS revcut_rl) 1); +by (eresolve_tac [exE] 1); +by (dresolve_tac [WO6_imp_NN_not_empty] 1); +by (eresolve_tac [Un_subset_iff RS iffD1 RS conjE] 1); +by (eres_inst_tac [("A","NN(y)")] not_emptyE 1); +by (forward_tac [y_well_ord] 1); +by (fast_tac (ZF_cs addEs [well_ord_subset]) 2); +by (fast_tac (ZF_cs addSIs [lemma3] addSDs [NN_y_0] addSEs [not_emptyE]) 1); +qed "WO6_imp_WO1"; + diff -r 547931cbbf08 -r 4ef4f7ff2aeb src/ZF/AC/WO6_WO1.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/AC/WO6_WO1.thy Fri Mar 31 11:55:29 1995 +0200 @@ -0,0 +1,3 @@ +(*Dummy theory to document dependencies *) + +WO6_WO1 = "rel_is_fun" + AC_Equiv diff -r 547931cbbf08 -r 4ef4f7ff2aeb src/ZF/AC/rel_is_fun.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/AC/rel_is_fun.ML Fri Mar 31 11:55:29 1995 +0200 @@ -0,0 +1,75 @@ +(* Title: ZF/AC/rel_is_fun.ML + ID: $Id$ + Author: Krzysztof Gr`abczewski + +Lemmas needed to state when a finite relation is a function. + +The criteria are cardinalities of the relation and its domain. +Used in WO6WO1.ML +*) + +goalw Cardinal.thy [lepoll_def] + "!!m. [| m:nat; u lepoll m |] ==> domain(u) lepoll m"; +by (eresolve_tac [exE] 1); +by (res_inst_tac [("x", + "lam x:domain(u). LEAST i. EX y. : u & f` = i")] exI 1); +by (res_inst_tac [("d","%y. fst(converse(f)`y)")] lam_injective 1); +by (fast_tac (ZF_cs addIs [LeastI2, nat_into_Ord RS Ord_in_Ord, + inj_is_fun RS apply_type]) 1); +by (eresolve_tac [domainE] 1); +by (forward_tac [inj_is_fun RS apply_type] 1 THEN (atac 1)); +by (resolve_tac [LeastI2] 1); +by (REPEAT (fast_tac (ZF_cs addIs [fst_conv, left_inverse RS ssubst] + addSEs [nat_into_Ord RS Ord_in_Ord]) 1)); +val lepoll_m_imp_domain_lepoll_m = result(); + +goal ZF.thy "!!r. [| : r; c~=b |] ==> domain(r-{}) = domain(r)"; +by (resolve_tac [equalityI] 1); +by (fast_tac (ZF_cs addSIs [domain_mono]) 1); +by (resolve_tac [subsetI] 1); +by (excluded_middle_tac "x = a" 1); +by (REPEAT (fast_tac (ZF_cs addSIs [domainI] addSEs [domainE]) 1)); +val domain_diff_eq_domain = result(); + +goal Cardinal.thy + "!!r. [| succ(m) lepoll domain(r); r lepoll succ(m); m:nat |] ==> \ +\ ALL a:domain(r). EX! b. : r"; +by (resolve_tac [ballI] 1); +by (eresolve_tac [domainE] 1); +by (resolve_tac [ex1I] 1 THEN (atac 1)); +by (resolve_tac [excluded_middle RS disjE] 1 THEN (atac 2)); +by (fast_tac (ZF_cs addSEs [lepoll_trans RS succ_lepoll_natE, + diff_sing_lepoll RSN (2, lepoll_m_imp_domain_lepoll_m)] + addEs [not_sym RSN (2, domain_diff_eq_domain) RS subst]) 1); +val rel_domain_ex1 = result(); + +goal ZF.thy "!! r. [| ALL a:A. EX! b. : r; r<=A*B |] \ +\ ==> r = (lam a:A. THE b. : r)"; +by (resolve_tac [equalityI] 1); +by (resolve_tac [subsetI] 1); +by (dresolve_tac [subsetD] 1 THEN (atac 1)); +by (eresolve_tac [SigmaE] 1); +by (hyp_subst_tac 1); +by (dresolve_tac [bspec] 1 THEN (atac 1)); +by (eresolve_tac [lamI RS subst_elem] 1); +by (forward_tac [theI] 1); +by (asm_simp_tac ZF_ss 1); +by (fast_tac (ZF_cs addIs [theI] addSEs [bspec] addSEs [lamE]) 2); +by (eresolve_tac [ex1_equalsE] 1 THEN (REPEAT (atac 1))); +val rel_is_lam = result(); + +goal ZF.thy "!! r. [| ALL a:A. EX! b. : r; r<=A*B |] \ +\ ==> (lam a:A. THE b. : r) : A->B"; +by (fast_tac (ZF_cs addSIs [lam_type] addSEs [Pair_inject] + addSDs [bspec, theI]) 1); +val lam_the_type = result(); + +goal Cardinal.thy + "!!r. [| succ(m) lepoll domain(r); r lepoll succ(m); m:nat; \ +\ r<=A*B; A=domain(r) |] ==> r: A->B"; +by (hyp_subst_tac 1); +by (resolve_tac [rel_domain_ex1 RS + (rel_domain_ex1 RS rel_is_lam RSN (3, + lam_the_type RS subst_elem))] 1 + THEN (TRYALL atac)); +val rel_is_fun = result(); diff -r 547931cbbf08 -r 4ef4f7ff2aeb src/ZF/AC/rel_is_fun.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ZF/AC/rel_is_fun.thy Fri Mar 31 11:55:29 1995 +0200 @@ -0,0 +1,3 @@ +(*Dummy theory to document dependencies *) + +rel_is_fun = "Cardinal"