# HG changeset patch # User paulson <lp15@cam.ac.uk> # Date 1555068560 -3600 # Node ID 4f19b92ab6d7ec774f593ea23f49c609c740fd2b # Parent 4ce88d646767d22c5012fb55e710d95cf45c2fe1 tidying up messy proofs about group element order diff -r 4ce88d646767 -r 4f19b92ab6d7 src/HOL/Algebra/Multiplicative_Group.thy --- a/src/HOL/Algebra/Multiplicative_Group.thy Thu Apr 11 22:38:02 2019 +0100 +++ b/src/HOL/Algebra/Multiplicative_Group.thy Fri Apr 12 12:29:20 2019 +0100 @@ -53,7 +53,7 @@ lemma evalRR_add: assumes "p \<in> carrier P" "q \<in> carrier P" - assumes x:"x \<in> carrier R" + assumes x: "x \<in> carrier R" shows "eval R R id x (p \<oplus>\<^bsub>P\<^esub> q) = eval R R id x p \<oplus> eval R R id x q" proof - interpret UP_pre_univ_prop R R id by unfold_locales simp @@ -63,7 +63,7 @@ lemma evalRR_sub: assumes "p \<in> carrier P" "q \<in> carrier P" - assumes x:"x \<in> carrier R" + assumes x: "x \<in> carrier R" shows "eval R R id x (p \<ominus>\<^bsub>P\<^esub> q) = eval R R id x p \<ominus> eval R R id x q" proof - interpret UP_pre_univ_prop R R id by unfold_locales simp @@ -73,7 +73,7 @@ lemma evalRR_mult: assumes "p \<in> carrier P" "q \<in> carrier P" - assumes x:"x \<in> carrier R" + assumes x: "x \<in> carrier R" shows "eval R R id x (p \<otimes>\<^bsub>P\<^esub> q) = eval R R id x p \<otimes> eval R R id x q" proof - interpret UP_pre_univ_prop R R id by unfold_locales simp @@ -225,10 +225,10 @@ hence "a = b" using dvd_div_ge_1[OF _ \<open>d dvd n\<close>] \<open>n>0\<close> by (simp add: mult.commute nat_mult_eq_cancel1) } thus "inj_on (\<lambda>a. a*n div d) ?RF" unfolding inj_on_def by blast - { fix a assume a:"a\<in>?RF" + { fix a assume a: "a\<in>?RF" hence "a * (n div d) \<ge> 1" using \<open>n>0\<close> dvd_div_ge_1[OF _ \<open>d dvd n\<close>] by simp - hence ge_1:"a * n div d \<ge> 1" by (simp add: \<open>d dvd n\<close> div_mult_swap) - have le_n:"a * n div d \<le> n" using div_mult_mono a by simp + hence ge_1: "a * n div d \<ge> 1" by (simp add: \<open>d dvd n\<close> div_mult_swap) + have le_n: "a * n div d \<le> n" using div_mult_mono a by simp have "gcd (a * n div d) n = n div d * gcd a d" by (simp add: gcd_mult_distrib_nat q ac_simps) hence "n div gcd (a * n div d) n = d*n div (d*(n div d))" using a by simp @@ -244,9 +244,9 @@ by (fastforce simp add: div_le_mono div_gcd_coprime) } thus "(\<lambda>a. a div gcd a n) ` ?F \<subseteq> ?RF" by blast qed force+ - } hence phi'_eq:"\<And>d. d dvd n \<Longrightarrow> phi' d = card {m \<in> {1 .. n}. n div gcd m n = d}" + } hence phi'_eq: "\<And>d. d dvd n \<Longrightarrow> phi' d = card {m \<in> {1 .. n}. n div gcd m n = d}" unfolding phi'_def by presburger - have fin:"finite {d. d dvd n}" using dvd_nat_bounds[OF \<open>n>0\<close>] by force + have fin: "finite {d. d dvd n}" using dvd_nat_bounds[OF \<open>n>0\<close>] by force have "(\<Sum>d | d dvd n. phi' d) = card (\<Union>d \<in> {d. d dvd n}. {m \<in> {1 .. n}. n div gcd m n = d})" using card_UN_disjoint[OF fin, of "(\<lambda>d. {m \<in> {1 .. n}. n div gcd m n = d})"] phi'_eq @@ -390,101 +390,6 @@ \<Longrightarrow> ord (x \<otimes> y) dvd (ord x * ord y)" by (simp add: ord_mul_divides m_comm) - -definition old_ord where "old_ord a = Min {d \<in> {1 .. order G} . a [^] d = \<one>}" - -lemma - assumes finite: "finite (carrier G)" - assumes a: "a \<in> carrier G" - shows old_ord_ge_1: "1 \<le> old_ord a" and old_ord_le_group_order: "old_ord a \<le> order G" - and pow_old_ord_eq_1: "a [^] old_ord a = \<one>" -proof - - have "\<not>inj_on (\<lambda>x. a [^] x) {0 .. order G}" - proof (rule notI) - assume A: "inj_on (\<lambda>x. a [^] x) {0 .. order G}" - have "order G + 1 = card {0 .. order G}" by simp - also have "\<dots> = card ((\<lambda>x. a [^] x) ` {0 .. order G})" (is "_ = card ?S") - using A by (simp add: card_image) - also have "?S = {a [^] x | x. x \<in> {0 .. order G}}" by blast - also have "\<dots> \<subseteq> carrier G" (is "?S \<subseteq> _") using a by blast - then have "card ?S \<le> order G" unfolding order_def - by (rule card_mono[OF finite]) - finally show False by arith - qed - - then obtain x y where x_y:"x \<noteq> y" "x \<in> {0 .. order G}" "y \<in> {0 .. order G}" - "a [^] x = a [^] y" unfolding inj_on_def by blast - obtain d where "1 \<le> d" "a [^] d = \<one>" "d \<le> order G" - proof cases - assume "y < x" with x_y show ?thesis - by (intro that[where d="x - y"]) (auto simp add: pow_eq_div2[OF a]) - next - assume "\<not>y < x" with x_y show ?thesis - by (intro that[where d="y - x"]) (auto simp add: pow_eq_div2[OF a]) - qed - hence "old_ord a \<in> {d \<in> {1 .. order G} . a [^] d = \<one>}" - unfolding old_ord_def using Min_in[of "{d \<in> {1 .. order G} . a [^] d = \<one>}"] - by fastforce - then show "1 \<le> old_ord a" and "old_ord a \<le> order G" and "a [^] old_ord a = \<one>" - by (auto simp: order_def) -qed - -lemma old_ord_min: - assumes "finite (carrier G)" "1 \<le> d" "a \<in> carrier G" "a [^] d = \<one>" shows "old_ord a \<le> d" -proof - - define Ord where "Ord = {d \<in> {1..order G}. a [^] d = \<one>}" - have fin: "finite Ord" by (auto simp: Ord_def) - have in_ord: "old_ord a \<in> Ord" - using assms pow_old_ord_eq_1 old_ord_ge_1 old_ord_le_group_order by (auto simp: Ord_def) - then have "Ord \<noteq> {}" by auto - - show ?thesis - proof (cases "d \<le> order G") - case True - then have "d \<in> Ord" using assms by (auto simp: Ord_def) - with fin in_ord show ?thesis - unfolding old_ord_def Ord_def[symmetric] by simp - next - case False - then show ?thesis using in_ord by (simp add: Ord_def) - qed -qed - -lemma old_ord_dvd_pow_eq_1: - assumes "finite (carrier G)" "a \<in> carrier G" "a [^] k = \<one>" - shows "old_ord a dvd k" -proof - - define r where "r = k mod old_ord a" - - define r q where "r = k mod old_ord a" and "q = k div old_ord a" - then have q: "k = q * old_ord a + r" - by (simp add: div_mult_mod_eq) - hence "a[^]k = (a[^]old_ord a)[^]q \<otimes> a[^]r" - using assms by (simp add: mult.commute nat_pow_mult nat_pow_pow) - hence "a[^]k = a[^]r" using assms by (simp add: pow_old_ord_eq_1) - hence "a[^]r = \<one>" using assms(3) by simp - have "r < old_ord a" using old_ord_ge_1[OF assms(1-2)] by (simp add: r_def) - hence "r = 0" using \<open>a[^]r = \<one>\<close> old_ord_def[of a] old_ord_min[of r a] assms(1-2) by linarith - thus ?thesis using q by simp -qed - -lemma (in group) ord_iff_old_ord: - assumes finite: "finite (carrier G)" - assumes a: "a \<in> carrier G" - shows "ord a = Min {d \<in> {1 .. order G} . a [^] d = \<one>}" -proof - - have "a [^] ord a = \<one>" - using a pow_ord_eq_1 by blast - then show ?thesis - by (metis a dvd_antisym local.finite old_ord_def old_ord_dvd_pow_eq_1 pow_eq_id pow_old_ord_eq_1) -qed - -lemma - assumes finite: "finite (carrier G)" - assumes a: "a \<in> carrier G" - shows ord_ge_1: "1 \<le> ord a" - using a group.old_ord_ge_1 group.pow_eq_id group.pow_old_ord_eq_1 is_group local.finite by fastforce - lemma ord_inj: assumes a: "a \<in> carrier G" shows "inj_on (\<lambda> x . a [^] x) {0 .. ord a - 1}" @@ -510,7 +415,7 @@ shows "inj_on (\<lambda> x . a [^] x) {1 .. ord a}" proof (rule inj_onI, rule ccontr) fix x y :: nat - assume A:"x \<in> {1 .. ord a}" "y \<in> {1 .. ord a}" "a [^] x = a [^] y" "x\<noteq>y" + assume A: "x \<in> {1 .. ord a}" "y \<in> {1 .. ord a}" "a [^] x = a [^] y" "x\<noteq>y" { assume "x < ord a" "y < ord a" hence False using ord_inj[OF assms] A unfolding inj_on_def by fastforce } @@ -529,13 +434,33 @@ ultimately show False using A by force qed +lemma (in group) ord_ge_1: + assumes finite: "finite (carrier G)" and a: "a \<in> carrier G" + shows "ord a \<ge> 1" +proof - + have "((\<lambda>n::nat. a [^] n) ` {0<..}) \<subseteq> carrier G" + using a by blast + then have "finite ((\<lambda>n::nat. a [^] n) ` {0<..})" + using finite_subset finite by auto + then have "\<not> inj_on (\<lambda>n::nat. a [^] n) {0<..}" + using finite_imageD infinite_Ioi by blast + then obtain i j::nat where "i \<noteq> j" "a [^] i = a [^] j" + by (auto simp: inj_on_def) + then have "\<exists>n::nat. n>0 \<and> a [^] n = \<one>" + by (metis a diffs0_imp_equal pow_eq_div2 neq0_conv) + then have "ord a \<noteq> 0" + by (simp add: ord_eq_0 [OF a]) + then show ?thesis + by simp +qed + lemma ord_elems: assumes "finite (carrier G)" "a \<in> carrier G" shows "{a[^]x | x. x \<in> (UNIV :: nat set)} = {a[^]x | x. x \<in> {0 .. ord a - 1}}" (is "?L = ?R") proof show "?R \<subseteq> ?L" by blast { fix y assume "y \<in> ?L" - then obtain x::nat where x:"y = a[^]x" by auto + then obtain x::nat where x: "y = a[^]x" by auto define r q where "r = x mod ord a" and "q = x div ord a" then have "x = q * ord a + r" by (simp add: div_mult_mod_eq) @@ -550,7 +475,7 @@ qed lemma generate_pow_on_finite_carrier: \<^marker>\<open>contributor \<open>Paulo EmÃlio de Vilhena\<close>\<close> - assumes "finite (carrier G)" and "a \<in> carrier G" + assumes "finite (carrier G)" and a: "a \<in> carrier G" shows "generate G { a } = { a [^] k | k. k \<in> (UNIV :: nat set) }" proof show "{ a [^] k | k. k \<in> (UNIV :: nat set) } \<subseteq> generate G { a }" @@ -560,14 +485,14 @@ hence "b = a [^] (int k)" by (simp add: int_pow_int) thus "b \<in> generate G { a }" - unfolding generate_pow[OF assms(2)] by blast + unfolding generate_pow[OF a] by blast qed next show "generate G { a } \<subseteq> { a [^] k | k. k \<in> (UNIV :: nat set) }" proof fix b assume "b \<in> generate G { a }" then obtain k :: int where k: "b = a [^] k" - unfolding generate_pow[OF assms(2)] by blast + unfolding generate_pow[OF a] by blast show "b \<in> { a [^] k | k. k \<in> (UNIV :: nat set) }" proof (cases "k < 0") assume "\<not> k < 0" @@ -577,15 +502,15 @@ next assume "k < 0" hence b: "b = inv (a [^] (nat (- k)))" - using k \<open>a \<in> carrier G\<close> by (auto simp: int_pow_neg) + using k a by (auto simp: int_pow_neg) obtain m where m: "ord a * m \<ge> nat (- k)" by (metis assms mult.left_neutral mult_le_mono1 ord_ge_1) hence "a [^] (ord a * m) = \<one>" - by (metis assms nat_pow_one nat_pow_pow pow_ord_eq_1) + by (metis a nat_pow_one nat_pow_pow pow_ord_eq_1) then obtain k' :: nat where "(a [^] (nat (- k))) \<otimes> (a [^] k') = \<one>" - using m assms(2) nat_le_iff_add nat_pow_mult by auto + using m a nat_le_iff_add nat_pow_mult by auto hence "b = a [^] k'" - using b assms(2) by (metis inv_unique' nat_pow_closed nat_pow_comm) + using b a by (metis inv_unique' nat_pow_closed nat_pow_comm) thus "b \<in> { a [^] k | k. k \<in> (UNIV :: nat set) }" by blast qed qed @@ -602,11 +527,23 @@ qed lemma ord_dvd_group_order: - assumes "finite (carrier G)" and "a \<in> carrier G" + assumes "a \<in> carrier G" shows "(ord a) dvd (order G)" - using lagrange[OF generate_is_subgroup[of " { a }"]] assms(2) - unfolding generate_pow_card[OF assms] - by (metis dvd_triv_right empty_subsetI insert_subset) +proof (cases "finite (carrier G)") + case True + then show ?thesis + using lagrange[OF generate_is_subgroup[of "{a}"]] assms + unfolding generate_pow_card[OF True assms] + by (metis dvd_triv_right empty_subsetI insert_subset) +next + case False + then show ?thesis + using order_gt_0_iff_finite by auto +qed + +lemma (in group) pow_order_eq_1: + assumes "a \<in> carrier G" shows "a [^] order G = \<one>" + using assms by (metis nat_pow_pow ord_dvd_group_order pow_ord_eq_1 dvdE nat_pow_one) lemma dvd_gcd: fixes a b :: nat @@ -620,69 +557,29 @@ lemma (in group) ord_le_group_order: assumes finite: "finite (carrier G)" and a: "a \<in> carrier G" shows "ord a \<le> order G" - by (simp add: finite order_gt_0_iff_finite dvd_imp_le [OF ord_dvd_group_order [OF assms]]) + by (simp add: a dvd_imp_le local.finite ord_dvd_group_order order_gt_0_iff_finite) -lemma ord_pow_dvd_ord_elem: - assumes finite[simp]: "finite (carrier G)" - assumes a[simp]: "a \<in> carrier G" - shows "ord (a[^]n) = ord a div gcd n (ord a)" +lemma (in group) ord_pow_gen: + assumes "x \<in> carrier G" + shows "ord (pow G x k) = (if k = 0 then 1 else ord x div gcd (ord x) k)" proof - - have "(a[^]n) [^] ord a = (a [^] ord a) [^] n" - by (simp add: nat_pow_pow pow_eq_id) - hence "(a[^]n) [^] ord a = \<one>" by (simp add: pow_ord_eq_1) - obtain q where "n * (ord a div gcd n (ord a)) = ord a * q" by (rule dvd_gcd) - hence "(a[^]n) [^] (ord a div gcd n (ord a)) = (a [^] ord a)[^]q" - using a nat_pow_pow by presburger - hence pow_eq_1: "(a[^]n) [^] (ord a div gcd n (ord a)) = \<one>" - by (auto simp add : pow_ord_eq_1[of a]) - have "ord a \<ge> 1" using ord_ge_1 by simp - have ge_1:"ord a div gcd n (ord a) \<ge> 1" + have "ord (x [^] k) = ord x div gcd (ord x) k" + if "0 < k" proof - - have "gcd n (ord a) dvd ord a" by blast - thus ?thesis by (rule dvd_div_ge_1[OF \<open>ord a \<ge> 1\<close>]) - qed - have "ord a \<le> order G" by (simp add: ord_le_group_order) - have "ord a div gcd n (ord a) \<le> order G" - proof - - have "ord a div gcd n (ord a) \<le> ord a" by simp - thus ?thesis using \<open>ord a \<le> order G\<close> by linarith + have "(d dvd k * n) = (d div gcd (d) k dvd n)" for d n + using that by (simp add: div_dvd_iff_mult gcd_mult_distrib_nat mult.commute) + then show ?thesis + using that by (auto simp add: assms ord_unique nat_pow_pow pow_eq_id) qed - hence ord_gcd_elem:"ord a div gcd n (ord a) \<in> {d \<in> {1..order G}. (a[^]n) [^] d = \<one>}" - using ge_1 pow_eq_1 by force - { fix d :: nat - assume d_elem:"d \<in> {d \<in> {1..order G}. (a[^]n) [^] d = \<one>}" - assume d_lt:"d < ord a div gcd n (ord a)" - hence pow_nd:"a[^](n*d) = \<one>" using d_elem - by (simp add : nat_pow_pow) - hence "ord a dvd n*d" using assms pow_eq_id by blast - then obtain q where "ord a * q = n*d" by (metis dvd_mult_div_cancel) - hence prod_eq:"(ord a div gcd n (ord a)) * q = (n div gcd n (ord a)) * d" - by (simp add: dvd_div_mult) - have cp:"coprime (ord a div gcd n (ord a)) (n div gcd n (ord a))" - proof - - have "coprime (n div gcd n (ord a)) (ord a div gcd n (ord a))" - using div_gcd_coprime[of n "ord a"] ge_1 by fastforce - thus ?thesis by (simp add: ac_simps) - qed - have dvd_d:"(ord a div gcd n (ord a)) dvd d" - proof - - have "ord a div gcd n (ord a) dvd (n div gcd n (ord a)) * d" using prod_eq - by (metis dvd_triv_right mult.commute) - hence "ord a div gcd n (ord a) dvd d * (n div gcd n (ord a))" - by (simp add: mult.commute) - then show ?thesis - using cp by (simp add: coprime_dvd_mult_left_iff) - qed - have "d > 0" using d_elem by simp - hence "ord a div gcd n (ord a) \<le> d" using dvd_d by (simp add : Nat.dvd_imp_le) - hence False using d_lt by simp - } hence ord_gcd_min: "\<And> d . d \<in> {d \<in> {1..order G}. (a[^]n) [^] d = \<one>} - \<Longrightarrow> d\<ge>ord a div gcd n (ord a)" by fastforce - have fin:"finite {d \<in> {1..order G}. (a[^]n) [^] d = \<one>}" by auto - thus ?thesis using Min_eqI[OF fin ord_gcd_min ord_gcd_elem] - by (simp add: group.ord_iff_old_ord is_group) + then show ?thesis by auto qed +lemma (in group) + assumes finite': "finite (carrier G)" "a \<in> carrier G" + shows pow_ord_eq_ord_iff: "group.ord G (a [^] k) = ord a \<longleftrightarrow> coprime k (ord a)" (is "?L \<longleftrightarrow> ?R") + using assms ord_ge_1 [OF assms] + by (auto simp: div_eq_dividend_iff ord_pow_gen coprime_iff_gcd_eq_1 gcd.commute split: if_split_asm) + lemma element_generates_subgroup: assumes finite[simp]: "finite (carrier G)" assumes a[simp]: "a \<in> carrier G" @@ -726,14 +623,15 @@ using mult_of_is_Units units_of_inv unfolding units_of_def by simp -lemma field_mult_group: - shows "group (mult_of R)" - apply (rule groupI) - apply (auto simp: mult_of_simps m_assoc dest: integral) - by (metis Diff_iff Units_inv_Units Units_l_inv field_Units singletonE) +lemma (in field) field_mult_group: "group (mult_of R)" + proof (rule groupI) + show "\<exists>y\<in>carrier (mult_of R). y \<otimes>\<^bsub>mult_of R\<^esub> x = \<one>\<^bsub>mult_of R\<^esub>" + if "x \<in> carrier (mult_of R)" for x + using group.l_inv_ex mult_of_is_Units that units_group by fastforce +qed (auto simp: m_assoc dest: integral) lemma finite_mult_of: "finite (carrier R) \<Longrightarrow> finite (carrier (mult_of R))" - by (auto simp: mult_of_simps) + by simp lemma order_mult_of: "finite (carrier R) \<Longrightarrow> order (mult_of R) = order R - 1" unfolding order_def carrier_mult_of by (simp add: card.remove) @@ -760,7 +658,7 @@ context UP_cring begin -lemma is_UP_cring:"UP_cring R" by (unfold_locales) +lemma is_UP_cring: "UP_cring R" by (unfold_locales) lemma is_UP_ring: shows "UP_ring R" by (unfold_locales) @@ -792,23 +690,23 @@ show ?case proof (cases "\<exists> a \<in> carrier R . eval R R id a f = \<zero>") case True - then obtain a where a_carrier[simp]: "a \<in> carrier R" and a_root:"eval R R id a f = \<zero>" by blast + then obtain a where a_carrier[simp]: "a \<in> carrier R" and a_root: "eval R R id a f = \<zero>" by blast have R_not_triv: "carrier R \<noteq> {\<zero>}" by (metis R.one_zeroI R.zero_not_one) - obtain q where q:"(q \<in> carrier P)" and - f:"f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> monom P (eval R R id a f) 0" + obtain q where q: "(q \<in> carrier P)" and + f: "f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q \<oplus>\<^bsub>P\<^esub> monom P (eval R R id a f) 0" using remainder_theorem[OF Suc.prems(1) a_carrier R_not_triv] by auto hence lin_fac: "f = (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<otimes>\<^bsub>P\<^esub> q" using q by (simp add: a_root) - have deg:"deg R (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) = 1" + have deg: "deg R (monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) = 1" using a_carrier by (simp add: deg_minus_eq) - hence mon_not_zero:"(monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<noteq> \<zero>\<^bsub>P\<^esub>" + hence mon_not_zero: "(monom P \<one>\<^bsub>R\<^esub> 1 \<ominus>\<^bsub> P\<^esub> monom P a 0) \<noteq> \<zero>\<^bsub>P\<^esub>" by (fastforce simp del: r_right_minus_eq) - have q_not_zero:"q \<noteq> \<zero>\<^bsub>P\<^esub>" using Suc by (auto simp add : lin_fac) + have q_not_zero: "q \<noteq> \<zero>\<^bsub>P\<^esub>" using Suc by (auto simp add : lin_fac) hence "deg R q = x" using Suc deg deg_mult[OF mon_not_zero q_not_zero _ q] by (simp add : lin_fac) - hence q_IH:"finite {a \<in> carrier R . eval R R id a q = \<zero>} + hence q_IH: "finite {a \<in> carrier R . eval R R id a q = \<zero>} \<and> card {a \<in> carrier R . eval R R id a q = \<zero>} \<le> x" using Suc q q_not_zero by blast - have subs:"{a \<in> carrier R . eval R R id a f = \<zero>} + have subs: "{a \<in> carrier R . eval R R id a f = \<zero>} \<subseteq> {a \<in> carrier R . eval R R id a q = \<zero>} \<union> {a}" (is "?L \<subseteq> ?R \<union> {a}") using a_carrier \<open>q \<in> _\<close> by (auto simp: evalRR_simps lin_fac R.integral_iff) @@ -831,20 +729,20 @@ lemma (in domain) num_roots_le_deg : fixes p d :: nat - assumes finite:"finite (carrier R)" - assumes d_neq_zero : "d \<noteq> 0" + assumes finite: "finite (carrier R)" + assumes d_neq_zero: "d \<noteq> 0" shows "card {x \<in> carrier R. x [^] d = \<one>} \<le> d" proof - let ?f = "monom (UP R) \<one>\<^bsub>R\<^esub> d \<ominus>\<^bsub> (UP R)\<^esub> monom (UP R) \<one>\<^bsub>R\<^esub> 0" - have one_in_carrier:"\<one> \<in> carrier R" by simp + have one_in_carrier: "\<one> \<in> carrier R" by simp interpret R: UP_domain R "UP R" by (unfold_locales) have "deg R ?f = d" using d_neq_zero by (simp add: R.deg_minus_eq) - hence f_not_zero:"?f \<noteq> \<zero>\<^bsub>UP R\<^esub>" using d_neq_zero by (auto simp add : R.deg_nzero_nzero) - have roots_bound:"finite {a \<in> carrier R . eval R R id a ?f = \<zero>} \<and> + hence f_not_zero: "?f \<noteq> \<zero>\<^bsub>UP R\<^esub>" using d_neq_zero by (auto simp add : R.deg_nzero_nzero) + have roots_bound: "finite {a \<in> carrier R . eval R R id a ?f = \<zero>} \<and> card {a \<in> carrier R . eval R R id a ?f = \<zero>} \<le> deg R ?f" using finite by (intro R.roots_bound[OF _ f_not_zero]) simp - have subs:"{x \<in> carrier R. x [^] d = \<one>} \<subseteq> {a \<in> carrier R . eval R R id a ?f = \<zero>}" + have subs: "{x \<in> carrier R. x [^] d = \<one>} \<subseteq> {a \<in> carrier R . eval R R id a ?f = \<zero>}" by (auto simp: R.evalRR_simps) then have "card {x \<in> carrier R. x [^] d = \<one>} \<le> card {a \<in> carrier R. eval R R id a ?f = \<zero>}" using finite by (simp add : card_mono) @@ -863,19 +761,6 @@ by the first proof given in the survey~@{cite "conrad-cyclicity"}. \<close> -lemma (in group) - assumes finite': "finite (carrier G)" - assumes "a \<in> carrier G" - shows pow_ord_eq_ord_iff: "group.ord G (a [^] k) = ord a \<longleftrightarrow> coprime k (ord a)" (is "?L \<longleftrightarrow> ?R") -proof - assume A: ?L then show ?R - using assms ord_ge_1 [OF assms] - by (auto simp: div_eq_dividend_iff ord_pow_dvd_ord_elem coprime_iff_gcd_eq_1) -next - assume ?R then show ?L - using ord_pow_dvd_ord_elem[OF assms, of k] by auto -qed - context field begin lemma num_elems_of_ord_eq_phi': @@ -890,17 +775,17 @@ by (rule field_mult_group) simp_all from exists - obtain a where a:"a \<in> carrier (mult_of R)" and ord_a: "group.ord (mult_of R) a = d" + obtain a where a: "a \<in> carrier (mult_of R)" and ord_a: "group.ord (mult_of R) a = d" by (auto simp add: card_gt_0_iff) - have set_eq1:"{a[^]n| n. n \<in> {1 .. d}} = {x \<in> carrier (mult_of R). x [^] d = \<one>}" + have set_eq1: "{a[^]n| n. n \<in> {1 .. d}} = {x \<in> carrier (mult_of R). x [^] d = \<one>}" proof (rule card_seteq) show "finite {x \<in> carrier (mult_of R). x [^] d = \<one>}" using finite by auto show "{a[^]n| n. n \<in> {1 ..d}} \<subseteq> {x \<in> carrier (mult_of R). x[^]d = \<one>}" proof fix x assume "x \<in> {a[^]n | n. n \<in> {1 .. d}}" - then obtain n where n:"x = a[^]n \<and> n \<in> {1 .. d}" by auto + then obtain n where n: "x = a[^]n \<and> n \<in> {1 .. d}" by auto have "x[^]d =(a[^]d)[^]n" using n a ord_a by (simp add:nat_pow_pow mult.commute) hence "x[^]d = \<one>" using ord_a G.pow_ord_eq_1[OF a] by fastforce thus "x \<in> {x \<in> carrier (mult_of R). x[^]d = \<one>}" using G.nat_pow_closed[OF a] n by blast @@ -908,7 +793,7 @@ show "card {x \<in> carrier (mult_of R). x [^] d = \<one>} \<le> card {a[^]n | n. n \<in> {1 .. d}}" proof - - have *:"{a[^]n | n. n \<in> {1 .. d }} = ((\<lambda> n. a[^]n) ` {1 .. d})" by auto + have *: "{a[^]n | n. n \<in> {1 .. d }} = ((\<lambda> n. a[^]n) ` {1 .. d})" by auto have "0 < order (mult_of R)" unfolding order_mult_of[OF finite] using card_mono[OF finite, of "{\<zero>, \<one>}"] by (simp add: order_def) have "card {x \<in> carrier (mult_of R). x [^] d = \<one>} \<le> card {x \<in> carrier R. x [^] d = \<one>}" @@ -919,13 +804,13 @@ qed qed - have set_eq2:"{x \<in> carrier (mult_of R) . group.ord (mult_of R) x = d} + have set_eq2: "{x \<in> carrier (mult_of R) . group.ord (mult_of R) x = d} = (\<lambda> n . a[^]n) ` {n \<in> {1 .. d}. group.ord (mult_of R) (a[^]n) = d}" (is "?L = ?R") proof - { fix x assume x:"x \<in> (carrier (mult_of R)) \<and> group.ord (mult_of R) x = d" + { fix x assume x: "x \<in> (carrier (mult_of R)) \<and> group.ord (mult_of R) x = d" hence "x \<in> {x \<in> carrier (mult_of R). x [^] d = \<one>}" by (simp add: G.pow_ord_eq_1[of x, symmetric]) - then obtain n where n:"x = a[^]n \<and> n \<in> {1 .. d}" using set_eq1 by blast + then obtain n where n: "x = a[^]n \<and> n \<in> {1 .. d}" using set_eq1 by blast hence "x \<in> ?R" using x by fast } thus "?L \<subseteq> ?R" by blast show "?R \<subseteq> ?L" using a by (auto simp add: carrier_mult_of[symmetric] simp del: carrier_mult_of) @@ -943,7 +828,7 @@ theorem (in field) finite_field_mult_group_has_gen : - assumes finite:"finite (carrier R)" + assumes finite: "finite (carrier R)" shows "\<exists> a \<in> carrier (mult_of R) . carrier (mult_of R) = {a[^]i | i::nat . i \<in> UNIV}" proof - note mult_of_simps[simp] @@ -964,10 +849,10 @@ using fin finite by (subst card_UN_disjoint) auto also have "?U = carrier (mult_of R)" proof - { fix x assume x:"x \<in> carrier (mult_of R)" - hence x':"x\<in>carrier (mult_of R)" by simp + { fix x assume x: "x \<in> carrier (mult_of R)" + hence x': "x\<in>carrier (mult_of R)" by simp then have "group.ord (mult_of R) x dvd order (mult_of R)" - using finite' G.ord_dvd_group_order[OF _ x'] by (simp add: order_mult_of) + using G.ord_dvd_group_order by blast hence "x \<in> ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord (mult_of R) x"] x by blast } thus "carrier (mult_of R) \<subseteq> ?U" by blast qed auto @@ -975,7 +860,7 @@ using order_mult_of finite' by (simp add: order_def) finally have sum_Ns_eq: "(\<Sum>d | d dvd order (mult_of R). ?N d) = order (mult_of R)" . - { fix d assume d:"d dvd order (mult_of R)" + { fix d assume d: "d dvd order (mult_of R)" have "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<le> phi' d" proof cases assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} = 0" thus ?thesis by presburger @@ -985,20 +870,20 @@ thus ?thesis using num_elems_of_ord_eq_phi'[OF finite d] by auto qed } - hence all_le:"\<And>i. i \<in> {d. d dvd order (mult_of R) } + hence all_le: "\<And>i. i \<in> {d. d dvd order (mult_of R) } \<Longrightarrow> (\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}) i \<le> (\<lambda>i. phi' i) i" by fast - hence le:"(\<Sum>i | i dvd order (mult_of R). ?N i) + hence le: "(\<Sum>i | i dvd order (mult_of R). ?N i) \<le> (\<Sum>i | i dvd order (mult_of R). phi' i)" using sum_mono[of "{d . d dvd order (mult_of R)}" "\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}"] by presburger have "order (mult_of R) = (\<Sum>d | d dvd order (mult_of R). phi' d)" using * by (simp add: sum_phi'_factors) - hence eq:"(\<Sum>i | i dvd order (mult_of R). ?N i) + hence eq: "(\<Sum>i | i dvd order (mult_of R). ?N i) = (\<Sum>i | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq by presburger have "\<And>i. i \<in> {d. d dvd order (mult_of R) } \<Longrightarrow> ?N i = (\<lambda>i. phi' i) i" proof (rule ccontr) fix i - assume i1:"i \<in> {d. d dvd order (mult_of R)}" and "?N i \<noteq> phi' i" + assume i1: "i \<in> {d. d dvd order (mult_of R)}" and "?N i \<noteq> phi' i" hence "?N i = 0" using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff) moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of "order (mult_of R)" i]) @@ -1010,17 +895,17 @@ thus False using eq by force qed hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero) - then obtain a where a:"a \<in> carrier (mult_of R)" and a_ord:"group.ord (mult_of R) a = order (mult_of R)" + then obtain a where a: "a \<in> carrier (mult_of R)" and a_ord: "group.ord (mult_of R) a = order (mult_of R)" by (auto simp add: card_gt_0_iff) - hence set_eq:"{a[^]i | i::nat. i \<in> UNIV} = (\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}" + hence set_eq: "{a[^]i | i::nat. i \<in> UNIV} = (\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}" using G.ord_elems[OF finite'] by auto - have card_eq:"card ((\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 .. group.ord (mult_of R) a - 1}" + have card_eq: "card ((\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 .. group.ord (mult_of R) a - 1}" by (intro card_image G.ord_inj finite' a) hence "card ((\<lambda> x . a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 ..order (mult_of R) - 1}" using assms by (simp add: card_eq a_ord) - hence card_R_minus_1:"card {a[^]i | i::nat. i \<in> UNIV} = order (mult_of R)" + hence card_R_minus_1: "card {a[^]i | i::nat. i \<in> UNIV} = order (mult_of R)" using * by (subst set_eq) auto - have **:"{a[^]i | i::nat. i \<in> UNIV} \<subseteq> carrier (mult_of R)" + have **: "{a[^]i | i::nat. i \<in> UNIV} \<subseteq> carrier (mult_of R)" using G.nat_pow_closed[OF a] by auto with _ have "carrier (mult_of R) = {a[^]i|i::nat. i \<in> UNIV}" by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite order_def del: UNIV_I)