# HG changeset patch # User huffman # Date 1178579455 -7200 # Node ID 51087b1cc77d027d27467418bcaf524e3defbe71 # Parent 7f000a38560693314f1dea38005fa3b152a249ba add lemmas power2_le_imp_le and power2_less_imp_less diff -r 7f000a385606 -r 51087b1cc77d src/HOL/Integ/NatBin.thy --- a/src/HOL/Integ/NatBin.thy Tue May 08 00:50:55 2007 +0200 +++ b/src/HOL/Integ/NatBin.thy Tue May 08 01:10:55 2007 +0200 @@ -326,6 +326,16 @@ "(- a)\ = (a\::'a::{comm_ring_1,recpower})" by (simp add: power2_eq_square) +lemma power2_le_imp_le: + fixes x y :: "'a::{ordered_semidom,recpower}" + shows "\x\ \ y\; 0 \ y\ \ x \ y" +unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) + +lemma power2_less_imp_less: + fixes x y :: "'a::{ordered_semidom,recpower}" + shows "\x\ < y\; 0 \ y\ \ x < y" +by (rule power_less_imp_less_base) + lemma power_minus1_even: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})" apply (induct "n") apply (auto simp add: power_Suc power_add power2_minus)