# HG changeset patch # User bauerg # Date 1083926864 -7200 # Node ID 521aa281808a8e11bd08f332ac3970cf5e354544 # Parent 247615bfffb86c9ee5a77be58d51c4b2ec046807 *** empty log message *** diff -r 247615bfffb8 -r 521aa281808a src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy --- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy Fri May 07 12:16:57 2004 +0200 +++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy Fri May 07 12:47:44 2004 +0200 @@ -5,7 +5,7 @@ header {* Extending non-maximal functions *} -theory HahnBanachExtLemmas = FunctionNorm + RealLemmas: +theory HahnBanachExtLemmas = FunctionNorm: text {* In this section the following context is presumed. Let @{text E} be @@ -227,7 +227,7 @@ also have "\ = - a * (p (inverse a \ y + x0)) - a * (h (inverse a \ y))" - by (rule real_mult_diff_distrib) + by (simp add: right_diff_distrib) also from lz x0 y' have "- a * (p (inverse a \ y + x0)) = p (a \ (inverse a \ y + x0))" by (simp add: abs_homogenous abs_minus_eqI2) @@ -247,7 +247,7 @@ a * (p (inverse a \ y + x0) - h (inverse a \ y))" by simp also have "... = a * p (inverse a \ y + x0) - a * h (inverse a \ y)" - by (rule real_mult_diff_distrib2) + by (simp add: right_diff_distrib) also from gz x0 y' have "a * p (inverse a \ y + x0) = p (a \ (inverse a \ y + x0))" by (simp add: abs_homogenous abs_eqI2) diff -r 247615bfffb8 -r 521aa281808a src/HOL/Real/HahnBanach/RealLemmas.thy --- a/src/HOL/Real/HahnBanach/RealLemmas.thy Fri May 07 12:16:57 2004 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,32 +0,0 @@ -(* Title: HOL/Real/HahnBanach/RealLemmas.thy - ID: $Id$ - Author: Gertrud Bauer, TU Munich -*) - -header {* Auxiliary theorems *} - -theory RealLemmas = Real: - -lemma real_mult_diff_distrib: - "a * (- x - (y::real)) = - a * x - a * y" -proof - - have "- x - y = - x + - y" by simp - also have "a * ... = a * - x + a * - y" - by (simp only: right_distrib) - also have "... = - a * x - a * y" - by simp - finally show ?thesis . -qed - -lemma real_mult_diff_distrib2: - "a * (x - (y::real)) = a * x - a * y" -proof - - have "x - y = x + - y" by simp - also have "a * ... = a * x + a * - y" - by (simp only: right_distrib) - also have "... = a * x - a * y" - by simp - finally show ?thesis . -qed - -end