# HG changeset patch # User mueller # Date 861897034 -7200 # Node ID 5230c37ad29f55f8440b56aebcc3569a91209ff5 # Parent 9c44acc3c6fa67424c41d091c5f9b5d06215b6dd Complete Redesign of Theory, main points are: - Extension of the continuity prover: * Lemmas about continuity of flift1 and flift2 are generalized * Lemmas about continuity of mixed definitions of HOL and LCF terms generalized Pay attention: Sometimes proofs are shorter now! - a number of new lemmas concerning flift1, flift2, Def and Undef, Def_less_is_eq (Def x << y = (Def x = y)) and lemmas characterizing flift1 and flift2 are added to !simpset Pay attention: Sometimes proofs are shorter now! - added tactic def_tac for eliminating x~=UU in assumptions diff -r 9c44acc3c6fa -r 5230c37ad29f src/HOLCF/Lift3.ML --- a/src/HOLCF/Lift3.ML Thu Apr 24 17:40:30 1997 +0200 +++ b/src/HOLCF/Lift3.ML Thu Apr 24 17:50:34 1997 +0200 @@ -1,6 +1,6 @@ (* Title: HOLCF/Lift3.ML ID: $Id$ - Author: Olaf Mueller, Robert Sandner + Author: Olaf Mueller Copyright 1996 Technische Universitaet Muenchen Theorems for Lift3.thy @@ -15,41 +15,36 @@ ]); (* ----------------------------------------------------------- *) -(* From Undef to UU *) +(* In lift.simps Undef is replaced by UU *) +(* Undef should be invisible from now on *) (* ----------------------------------------------------------- *) + Addsimps [inst_lift_pcpo]; local -val case1' = prove_goal Lift3.thy "lift_case f1 f2 UU = f1" +val case1' = prove_goal thy "lift_case f1 f2 UU = f1" (fn _ => [simp_tac (!simpset addsimps lift.simps) 1]); - -val case2' = prove_goal Lift3.thy "lift_case f1 f2 (Def a) = f2 a" +val case2' = prove_goal thy "lift_case f1 f2 (Def a) = f2 a" (fn _ => [Simp_tac 1]); - -val distinct1' = prove_goal Lift3.thy "UU ~= Def a" +val distinct1' = prove_goal thy "UU ~= Def a" (fn _ => [Simp_tac 1]); - -val distinct2' = prove_goal Lift3.thy "Def a ~= UU" +val distinct2' = prove_goal thy "Def a ~= UU" (fn _ => [Simp_tac 1]); - -val inject' = prove_goal Lift3.thy "Def a = Def aa = (a = aa)" +val inject' = prove_goal thy "Def a = Def aa = (a = aa)" (fn _ => [Simp_tac 1]); - -val rec1' = prove_goal Lift3.thy "lift_rec f1 f2 UU = f1" +val rec1' = prove_goal thy "lift_rec f1 f2 UU = f1" (fn _ => [Simp_tac 1]); - -val rec2' = prove_goal Lift3.thy "lift_rec f1 f2 (Def a) = f2 a" +val rec2' = prove_goal thy "lift_rec f1 f2 (Def a) = f2 a" (fn _ => [Simp_tac 1]); - -val induct' = prove_goal Lift3.thy "[| P UU; !a. P (Def a) |] ==> P lift" +val induct' = prove_goal thy "[| P UU; !a. P (Def a) |] ==> P lift" (fn prems => [cut_facts_tac prems 1, Asm_full_simp_tac 1, etac Lift1.lift.induct 1,fast_tac HOL_cs 1]); in -val Def_not_UU = distinct1' RS not_sym; +val Def_not_UU = distinct2'; structure lift = struct @@ -65,30 +60,27 @@ end; (* local *) +Delsimps lift.simps; Delsimps [inst_lift_pcpo]; -Delsimps lift.simps; - Addsimps [inst_lift_pcpo RS sym]; Addsimps lift.simps; -(* -------------------------------------------------------------------------*) -(* rewrite_rule for less_lift *) -(* -------------------------------------------------------------------------*) +(* --------------------------------------------------------*) + section"less_lift"; +(* --------------------------------------------------------*) -goal Lift3.thy "(x::'a lift) << y = (x=y | x=UU)"; +goal thy "(x::'a lift) << y = (x=y | x=UU)"; br (inst_lift_po RS ssubst) 1; by (Simp_tac 1); -val less_lift = result(); - - +qed"less_lift"; (* ---------------------------------------------------------- *) -(* Relating UU and Undef *) + section"UU and Def"; (* ---------------------------------------------------------- *) -goal Lift3.thy "x=UU | (? y.x=Def y)"; +goal thy "x=UU | (? y.x=Def y)"; by (lift.induct_tac "x" 1); by (Asm_simp_tac 1); by (rtac disjI2 1); @@ -96,7 +88,7 @@ by (Asm_simp_tac 1); qed"Lift_exhaust"; -val prems = goal Lift3.thy +val prems = goal thy "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P"; by (cut_facts_tac [Lift_exhaust] 1); by (fast_tac (HOL_cs addSEs prems) 1); @@ -108,142 +100,173 @@ by(ALLGOALS Asm_simp_tac); qed "expand_lift_case"; -goal Lift3.thy "(x~=UU)=(? y.x=Def y)"; +goal thy "(x~=UU)=(? y.x=Def y)"; br iffI 1; - br Lift_cases 1; - by (fast_tac HOL_cs 1); - by (fast_tac HOL_cs 1); -by (fast_tac (HOL_cs addSIs lift.distinct) 1); +br Lift_cases 1; +by (REPEAT (fast_tac (HOL_cs addSIs lift.distinct) 1)); qed"not_Undef_is_Def"; -val Undef_eq_UU = inst_lift_pcpo RS sym; +(* For x~=UU in assumptions def_tac replaces x by (Def a) in conclusion *) +val def_tac = etac (not_Undef_is_Def RS iffD1 RS exE) THEN' Asm_simp_tac; -val DefE = prove_goal Lift3.thy "Def x = UU ==> R" +bind_thm("Undef_eq_UU", inst_lift_pcpo RS sym); + +val DefE = prove_goal thy "Def x = UU ==> R" (fn prems => [ cut_facts_tac prems 1, asm_full_simp_tac (HOL_ss addsimps [Def_not_UU]) 1]); -val prems = goal Lift3.thy "[| x = Def s; x = UU |] ==> R"; +val prems = goal thy "[| x = Def s; x = UU |] ==> R"; by (cut_facts_tac prems 1); by (fast_tac (HOL_cs addSDs [DefE]) 1); -val DefE2 = result(); +qed"DefE2"; + +goal thy "Def x << Def y = (x = y)"; +by (stac (hd lift.inject RS sym) 1); +back(); +by (rtac iffI 1); +by (asm_full_simp_tac (!simpset addsimps [inst_lift_po] ) 1); +be (antisym_less_inverse RS conjunct1) 1; +qed"Def_inject_less_eq"; + +goal thy "Def x << y = (Def x = y)"; +by (simp_tac (!simpset addsimps [less_lift]) 1); +qed"Def_less_is_eq"; + +Addsimps [Def_less_is_eq]; (* ---------------------------------------------------------- *) -(* Lift is flat *) + section"Lift is flat"; (* ---------------------------------------------------------- *) -goalw Lift3.thy [flat_def] "flat (x::'a lift)"; +goalw thy [flat_def] "flat (x::'a lift)"; by (simp_tac (!simpset addsimps [less_lift]) 1); -val flat_lift = result(); +qed"flat_lift"; bind_thm("ax_flat_lift",flat_lift RS flatE); (* ---------------------------------------------------------- *) -(* More Continuity Proofs and Extended Tactic *) + section"Continuity Proofs for flift1, flift2, if"; (* ---------------------------------------------------------- *) -goal Lift3.thy "cont (%x. case x of Undef => UU | Def a => f a)"; - -br flatdom_strict2cont 1; - br flat_lift 1; -by (Simp_tac 1); - -val cont_flift1_arg = result(); - - - -goal Lift3.thy "cont (%x. case x of Undef => UU | Def a => Def (f a))"; - -br flatdom_strict2cont 1; - br flat_lift 1; -by (Simp_tac 1); - -val cont_flift2_arg = result(); - - - -goal Lift3.thy "!!f. [|! a.cont (%y. (f y) a)|] ==> \ -\ cont (%y. case x of Undef => UU | Def a => (f y) a)"; - -by (res_inst_tac [("x","x")] Lift_cases 1); - by (Asm_simp_tac 1); -by (fast_tac (HOL_cs addss !simpset) 1); - -qed"cont_flift1_not_arg"; - -val cont_flift1_not_arg2 = (allI RS cont_flift1_not_arg); - - - -(* zusammenfassen zu cont(%y. ((f y)`(g y)) s) *) +(* flift1 is continuous in its argument itself*) + +goal thy "cont (lift_case UU f)"; +br flatdom_strict2cont 1; +br flat_lift 1; +by (Simp_tac 1); +qed"cont_flift1_arg"; + +(* flift1 is continuous in a variable that occurs only + in the Def branch *) + +goal thy "!!f. [| !! a.cont (%y. (f y) a) |] ==> \ +\ cont (%y. lift_case UU (f y))"; +br cont2cont_CF1L_rev 1; +by (strip_tac 1); +by (res_inst_tac [("x","y")] Lift_cases 1); +by (Asm_simp_tac 1); +by (fast_tac (HOL_cs addss !simpset) 1); +qed"cont_flift1_not_arg"; + +(* flift1 is continuous in a variable that occurs either + in the Def branch or in the argument *) -goal Lift3.thy "!!f.cont g ==> cont(%x. (f`(g x)) s)"; -by (rtac monocontlub2cont 1); -(* monotone *) - by (rtac monofunI 1); - by (strip_tac 1); - by (rtac (monofun_cfun_arg RS monofun_fun_fun) 1); - by (etac (cont2mono RS monofunE RS spec RS spec RS mp) 1); - by (atac 1); -(* contlub *) -by (rtac contlubI 1); -by (strip_tac 1); -by ((rtac (cont2contlub RS contlubE RS spec RS mp RS ssubst) 1) THEN (atac 1)); - ba 1; -by (stac (contlub_cfun_arg RS fun_cong) 1); - be (cont2mono RS ch2ch_monofun) 1; - ba 1; -by (stac thelub_fun 1); - by (fast_tac ((HOL_cs addSIs [ch2ch_fappR]) - addSEs [cont2mono RS ch2ch_monofun]) 1); -br refl 1; -qed"cont_fapp_app1"; +goal thy "!!f. [| !! a.cont (%y. (f y) a); cont g|] ==> \ +\ cont (%y. lift_case UU (f y) (g y))"; +br cont2cont_app 1; +back(); +by (safe_tac set_cs); +br cont_flift1_not_arg 1; +auto(); +br cont_flift1_arg 1; +qed"cont_flift1_arg_and_not_arg"; + +(* flift2 is continuous in its argument itself *) + +goal thy "cont (lift_case UU (%y. Def (f y)))"; +br flatdom_strict2cont 1; +br flat_lift 1; +by (Simp_tac 1); +qed"cont_flift2_arg"; + +(* Two specific lemmas for the combination of LCF and HOL terms *) + +goal thy "!!f.[|cont g; cont f|] ==> cont(%x. ((f x)`(g x)) s)"; +br cont2cont_CF1L 1; +by (REPEAT (resolve_tac cont_lemmas1 1)); +auto(); +qed"cont_fapp_app"; + +goal thy "!!f.[|cont g; cont f|] ==> cont(%x. ((f x)`(g x)) s t)"; +br cont2cont_CF1L 1; +be cont_fapp_app 1; +ba 1; +qed"cont_fapp_app_app"; -goal Lift3.thy "cont(%y. (y`x) s)"; -by (rtac monocontlub2cont 1); - (* monotone *) - by (rtac monofunI 1); - by (strip_tac 1); - be (monofun_cfun_fun RS monofun_fun_fun) 1; -(* continuous *) -by (rtac contlubI 1); -by (strip_tac 1); -by (stac (contlub_cfun_fun RS fun_cong) 1); - by (atac 1); -by (stac thelub_fun 1); - be ch2ch_fappL 1; -br refl 1; -qed"cont_fapp_app2"; +(* continuity of if then else *) - - -val prems = goal Lift3.thy "[| cont f1; cont f2 |] ==> \ +val prems = goal thy "[| cont f1; cont f2 |] ==> \ \ cont (%x. if b then f1 x else f2 x)"; - by (cut_facts_tac prems 1); by (case_tac "b" 1); by (TRYALL (fast_tac (HOL_cs addss HOL_ss))); +qed"cont_if"; -val cont_if = result(); + +(* ---------------------------------------------------------- *) +(* Extension of cont_tac and installation of simplifier *) +(* ---------------------------------------------------------- *) + +bind_thm("cont2cont_CF1L_rev2",allI RS cont2cont_CF1L_rev); +val cont_lemmas_ext = [cont_flift1_arg,cont_flift2_arg, + cont_flift1_arg_and_not_arg,cont2cont_CF1L_rev2, + cont_fapp_app,cont_fapp_app_app,cont_if]; + +val cont_lemmas2 = cont_lemmas1 @ cont_lemmas_ext; + +Addsimps cont_lemmas_ext; + +fun cont_tac i = resolve_tac cont_lemmas2 i; +fun cont_tacR i = REPEAT (cont_tac i); + +fun cont_tacRs i = simp_tac (!simpset addsimps [flift1_def,flift2_def]) i THEN + REPEAT (cont_tac i); -val cont2cont_CF1L_rev2 = (allI RS cont2cont_CF1L_rev); +simpset := !simpset addSolver (K (DEPTH_SOLVE_1 o cont_tac)); + +(* ---------------------------------------------------------- *) + section"flift1, flift2"; +(* ---------------------------------------------------------- *) + -val cont_lemmas2 = cont_lemmas1@ - [cont_flift1_arg,cont_flift2_arg, - cont_flift1_not_arg2,cont2cont_CF1L_rev2, - cont_fapp_app1,cont_fapp_app2,cont_if]; +goal thy "flift1 f`(Def x) = (f x)"; +by (simp_tac (!simpset addsimps [flift1_def]) 1); +qed"flift1_Def"; + +goal thy "flift2 f`(Def x) = Def (f x)"; +by (simp_tac (!simpset addsimps [flift2_def]) 1); +qed"flift2_Def"; -Addsimps [cont_flift1_arg,cont_flift2_arg, - cont_flift1_not_arg2,cont2cont_CF1L_rev2, - cont_fapp_app1,cont_fapp_app2,cont_if]; +goal thy "flift1 f`UU = UU"; +by (simp_tac (!simpset addsimps [flift1_def]) 1); +qed"flift1_UU"; + +goal thy "flift2 f`UU = UU"; +by (simp_tac (!simpset addsimps [flift2_def]) 1); +qed"flift2_UU"; -fun cont_tac i = resolve_tac cont_lemmas2 i; -fun cont_tacR i = simp_tac (!simpset addsimps [flift1_def,flift2_def]) i THEN - REPEAT (cont_tac i); +Addsimps [flift1_Def,flift2_Def,flift1_UU,flift2_UU]; -simpset := !simpset addSolver (K (DEPTH_SOLVE_1 o cont_tac)); +goal thy "!!x. x~=UU ==> (flift2 f)`x~=UU"; +by (def_tac 1); +qed"flift2_nUU"; + +Addsimps [flift2_nUU]; + +