# HG changeset patch # User krauss # Date 1204549399 -3600 # Node ID 52617dca838625f506760f5a135659d5104a558f # Parent ae537f315b341221075461c5b0c30d622ff9f098 new theory of red-black trees, an efficient implementation of finite maps. diff -r ae537f315b34 -r 52617dca8386 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Sun Mar 02 15:02:06 2008 +0100 +++ b/src/HOL/IsaMakefile Mon Mar 03 14:03:19 2008 +0100 @@ -235,7 +235,7 @@ Library/Abstract_Rat.thy Library/Univ_Poly.thy\ Library/Numeral_Type.thy Library/Boolean_Algebra.thy Library/Countable.thy \ Library/RType.thy Library/Heap.thy Library/Heap_Monad.thy Library/Array.thy \ - Library/Ref.thy Library/Imperative_HOL.thy + Library/Ref.thy Library/Imperative_HOL.thy Library/RBT.thy @cd Library; $(ISATOOL) usedir $(OUT)/HOL Library diff -r ae537f315b34 -r 52617dca8386 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Sun Mar 02 15:02:06 2008 +0100 +++ b/src/HOL/Library/Library.thy Mon Mar 03 14:03:19 2008 +0100 @@ -38,6 +38,7 @@ Quicksort Quotient Ramsey + RBT State_Monad Univ_Poly While_Combinator diff -r ae537f315b34 -r 52617dca8386 src/HOL/Library/RBT.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/RBT.thy Mon Mar 03 14:03:19 2008 +0100 @@ -0,0 +1,1041 @@ +(* Title: RBT.thy + ID: $Id$ + Author: Markus Reiter, TU Muenchen + Author: Alexander Krauss, TU Muenchen +*) + +header {* Red-Black Trees *} + +(*<*) +theory RBT +imports Main AssocList +begin + +datatype color = R | B +datatype ('a,'b)"rbt" = Empty | Tr color "('a,'b)rbt" 'a 'b "('a,'b)rbt" + +(* Suchbaum-Eigenschaften *) + +primrec + pin_tree :: "'a \ 'b \ ('a,'b) rbt \ bool" +where + "pin_tree k v Empty = False" +| "pin_tree k v (Tr c l x y r) = (k = x \ v = y \ pin_tree k v l \ pin_tree k v r)" + +primrec + keys :: "('k,'v) rbt \ 'k set" +where + "keys Empty = {}" +| "keys (Tr _ l k _ r) = { k } \ keys l \ keys r" + +lemma pint_keys: "pin_tree k v t \ k \ keys t" by (induct t) auto + +primrec tlt :: "'a\order \ ('a,'b) rbt \ bool" +where + "tlt k Empty = True" +| "tlt k (Tr c lt kt v rt) = (kt < k \ tlt k lt \ tlt k rt)" + +abbreviation tllt (infix "|\" 50) +where "t |\ x == tlt x t" + +primrec tgt :: "'a\order \ ('a,'b) rbt \ bool" (infix "\|" 50) +where + "tgt k Empty = True" +| "tgt k (Tr c lt kt v rt) = (k < kt \ tgt k lt \ tgt k rt)" + +lemma tlt_prop: "(t |\ k) = (\x\keys t. x < k)" by (induct t) auto +lemma tgt_prop: "(k \| t) = (\x\keys t. k < x)" by (induct t) auto +lemmas tlgt_props = tlt_prop tgt_prop + +lemmas tgt_nit = tgt_prop pint_keys +lemmas tlt_nit = tlt_prop pint_keys + +lemma tlt_trans: "\ t |\ x; x < y \ \ t |\ y" + and tgt_trans: "\ x < y; y \| t\ \ x \| t" +by (auto simp: tlgt_props) + + +primrec st :: "('a::linorder, 'b) rbt \ bool" +where + "st Empty = True" +| "st (Tr c l k v r) = (l |\ k \ k \| r \ st l \ st r)" + +primrec map_of :: "('a\linorder, 'b) rbt \ 'a \ 'b" +where + "map_of Empty k = None" +| "map_of (Tr _ l x y r) k = (if k < x then map_of l k else if x < k then map_of r k else Some y)" + +lemma map_of_tlt[simp]: "t |\ k \ map_of t k = None" +by (induct t) auto + +lemma map_of_tgt[simp]: "k \| t \ map_of t k = None" +by (induct t) auto + +lemma mapof_keys: "st t \ dom (map_of t) = keys t" +by (induct t) (auto simp: dom_def tgt_prop tlt_prop) + +lemma mapof_pit: "st t \ (map_of t k = Some v) = pin_tree k v t" +by (induct t) (auto simp: tlt_prop tgt_prop pint_keys) + +lemma map_of_Empty: "map_of Empty = empty" +by (rule ext) simp + +(* a kind of extensionality *) +lemma mapof_from_pit: + assumes st: "st t1" "st t2" + and eq: "\v. pin_tree (k\'a\linorder) v t1 = pin_tree k v t2" + shows "map_of t1 k = map_of t2 k" +proof (cases "map_of t1 k") + case None + then have "\v. \ pin_tree k v t1" + by (simp add: mapof_pit[symmetric] st) + with None show ?thesis + by (cases "map_of t2 k") (auto simp: mapof_pit st eq) +next + case (Some a) + then show ?thesis + apply (cases "map_of t2 k") + apply (auto simp: mapof_pit st eq) + by (auto simp add: mapof_pit[symmetric] st Some) +qed + +subsection {* Red-black properties *} + +primrec treec :: "('a,'b) rbt \ color" +where + "treec Empty = B" +| "treec (Tr c _ _ _ _) = c" + +primrec inv1 :: "('a,'b) rbt \ bool" +where + "inv1 Empty = True" +| "inv1 (Tr c lt k v rt) = (inv1 lt \ inv1 rt \ (c = B \ treec lt = B \ treec rt = B))" + +(* Weaker version *) +primrec inv1l :: "('a,'b) rbt \ bool" +where + "inv1l Empty = True" +| "inv1l (Tr c l k v r) = (inv1 l \ inv1 r)" +lemma [simp]: "inv1 t \ inv1l t" by (cases t) simp+ + +primrec bh :: "('a,'b) rbt \ nat" +where + "bh Empty = 0" +| "bh (Tr c lt k v rt) = (if c = B then Suc (bh lt) else bh lt)" + +primrec inv2 :: "('a,'b) rbt \ bool" +where + "inv2 Empty = True" +| "inv2 (Tr c lt k v rt) = (inv2 lt \ inv2 rt \ bh lt = bh rt)" + +definition + "isrbt t = (inv1 t \ inv2 t \ treec t = B \ st t)" + +lemma isrbt_st[simp]: "isrbt t \ st t" by (simp add: isrbt_def) + +lemma rbt_cases: + obtains (Empty) "t = Empty" + | (Red) l k v r where "t = Tr R l k v r" + | (Black) l k v r where "t = Tr B l k v r" +by (cases t, simp) (case_tac "color", auto) + +theorem Empty_isrbt[simp]: "isrbt Empty" +unfolding isrbt_def by simp + + +subsection {* Insertion *} + +fun (* slow, due to massive case splitting *) + balance :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balance (Tr R a w x b) s t (Tr R c y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" | + "balance (Tr R (Tr R a w x b) s t c) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" | + "balance (Tr R a w x (Tr R b s t c)) y z d = Tr R (Tr B a w x b) s t (Tr B c y z d)" | + "balance a w x (Tr R b s t (Tr R c y z d)) = Tr R (Tr B a w x b) s t (Tr B c y z d)" | + "balance a w x (Tr R (Tr R b s t c) y z d) = Tr R (Tr B a w x b) s t (Tr B c y z d)" | + "balance a s t b = Tr B a s t b" + +lemma balance_inv1: "\inv1l l; inv1l r\ \ inv1 (balance l k v r)" + by (induct l k v r rule: balance.induct) auto + +lemma balance_bh: "bh l = bh r \ bh (balance l k v r) = Suc (bh l)" + by (induct l k v r rule: balance.induct) auto + +lemma balance_inv2: + assumes "inv2 l" "inv2 r" "bh l = bh r" + shows "inv2 (balance l k v r)" + using assms + by (induct l k v r rule: balance.induct) auto + +lemma balance_tgt[simp]: "(v \| balance a k x b) = (v \| a \ v \| b \ v < k)" + by (induct a k x b rule: balance.induct) auto + +lemma balance_tlt[simp]: "(balance a k x b |\ v) = (a |\ v \ b |\ v \ k < v)" + by (induct a k x b rule: balance.induct) auto + +lemma balance_st: + fixes k :: "'a::linorder" + assumes "st l" "st r" "l |\ k" "k \| r" + shows "st (balance l k v r)" +using assms proof (induct l k v r rule: balance.induct) + case ("2_2" a x w b y t c z s va vb vd vc) + hence "y < z \ z \| Tr B va vb vd vc" + by (auto simp add: tlgt_props) + hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans) + with "2_2" show ?case by simp +next + case ("3_2" va vb vd vc x w b y s c z) + from "3_2" have "x < y \ tlt x (Tr B va vb vd vc)" + by (simp add: tlt.simps tgt.simps) + hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans) + with "3_2" show ?case by simp +next + case ("3_3" x w b y s c z t va vb vd vc) + from "3_3" have "y < z \ tgt z (Tr B va vb vd vc)" by simp + hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans) + with "3_3" show ?case by simp +next + case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc) + hence "x < y \ tlt x (Tr B vd ve vg vf)" by simp + hence 1: "tlt y (Tr B vd ve vg vf)" by (blast dest: tlt_trans) + from "3_4" have "y < z \ tgt z (Tr B va vb vii vc)" by simp + hence "tgt y (Tr B va vb vii vc)" by (blast dest: tgt_trans) + with 1 "3_4" show ?case by simp +next + case ("4_2" va vb vd vc x w b y s c z t dd) + hence "x < y \ tlt x (Tr B va vb vd vc)" by simp + hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans) + with "4_2" show ?case by simp +next + case ("5_2" x w b y s c z t va vb vd vc) + hence "y < z \ tgt z (Tr B va vb vd vc)" by simp + hence "tgt y (Tr B va vb vd vc)" by (blast dest: tgt_trans) + with "5_2" show ?case by simp +next + case ("5_3" va vb vd vc x w b y s c z t) + hence "x < y \ tlt x (Tr B va vb vd vc)" by simp + hence "tlt y (Tr B va vb vd vc)" by (blast dest: tlt_trans) + with "5_3" show ?case by simp +next + case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf) + hence "x < y \ tlt x (Tr B va vb vg vc)" by simp + hence 1: "tlt y (Tr B va vb vg vc)" by (blast dest: tlt_trans) + from "5_4" have "y < z \ tgt z (Tr B vd ve vii vf)" by simp + hence "tgt y (Tr B vd ve vii vf)" by (blast dest: tgt_trans) + with 1 "5_4" show ?case by simp +qed simp+ + +lemma keys_balance[simp]: + "keys (balance l k v r) = { k } \ keys l \ keys r" +by (induct l k v r rule: balance.induct) auto + +lemma balance_pit: + "pin_tree k x (balance l v y r) = (pin_tree k x l \ k = v \ x = y \ pin_tree k x r)" +by (induct l v y r rule: balance.induct) auto + +lemma map_of_balance[simp]: +fixes k :: "'a::linorder" +assumes "st l" "st r" "l |\ k" "k \| r" +shows "map_of (balance l k v r) x = map_of (Tr B l k v r) x" +by (rule mapof_from_pit) (auto simp:assms balance_pit balance_st) + +primrec paint :: "color \ ('a,'b) rbt \ ('a,'b) rbt" +where + "paint c Empty = Empty" +| "paint c (Tr _ l k v r) = Tr c l k v r" + +lemma paint_inv1l[simp]: "inv1l t \ inv1l (paint c t)" by (cases t) auto +lemma paint_inv1[simp]: "inv1l t \ inv1 (paint B t)" by (cases t) auto +lemma paint_inv2[simp]: "inv2 t \ inv2 (paint c t)" by (cases t) auto +lemma paint_treec[simp]: "treec (paint B t) = B" by (cases t) auto +lemma paint_st[simp]: "st t \ st (paint c t)" by (cases t) auto +lemma paint_pit[simp]: "pin_tree k x (paint c t) = pin_tree k x t" by (cases t) auto +lemma paint_mapof[simp]: "map_of (paint c t) = map_of t" by (rule ext) (cases t, auto) +lemma paint_tgt[simp]: "(v \| paint c t) = (v \| t)" by (cases t) auto +lemma paint_tlt[simp]: "(paint c t |\ v) = (t |\ v)" by (cases t) auto + +fun + ins :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "ins f k v Empty = Tr R Empty k v Empty" | + "ins f k v (Tr B l x y r) = (if k < x then balance (ins f k v l) x y r + else if k > x then balance l x y (ins f k v r) + else Tr B l x (f k y v) r)" | + "ins f k v (Tr R l x y r) = (if k < x then Tr R (ins f k v l) x y r + else if k > x then Tr R l x y (ins f k v r) + else Tr R l x (f k y v) r)" + +lemma ins_inv1_inv2: + assumes "inv1 t" "inv2 t" + shows "inv2 (ins f k x t)" "bh (ins f k x t) = bh t" + "treec t = B \ inv1 (ins f k x t)" "inv1l (ins f k x t)" + using assms + by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bh) + +lemma ins_tgt[simp]: "(v \| ins f k x t) = (v \| t \ k > v)" + by (induct f k x t rule: ins.induct) auto +lemma ins_tlt[simp]: "(ins f k x t |\ v) = (t |\ v \ k < v)" + by (induct f k x t rule: ins.induct) auto +lemma ins_st[simp]: "st t \ st (ins f k x t)" + by (induct f k x t rule: ins.induct) (auto simp: balance_st) + +lemma keys_ins: "keys (ins f k v t) = { k } \ keys t" +by (induct f k v t rule: ins.induct) auto + +lemma map_of_ins: + fixes k :: "'a::linorder" + assumes "st t" + shows "map_of (ins f k v t) x = ((map_of t)(k |-> case map_of t k of None \ v + | Some w \ f k w v)) x" +using assms by (induct f k v t rule: ins.induct) auto + +definition + insertwithkey :: "('a\linorder \ 'b \ 'b \ 'b) \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "insertwithkey f k v t = paint B (ins f k v t)" + +lemma insertwk_st: "st t \ st (insertwithkey f k x t)" + by (auto simp: insertwithkey_def) + +theorem insertwk_isrbt: + assumes inv: "isrbt t" + shows "isrbt (insertwithkey f k x t)" +using assms +unfolding insertwithkey_def isrbt_def +by (auto simp: ins_inv1_inv2) + +lemma map_of_insertwk: + assumes "st t" + shows "map_of (insertwithkey f k v t) x = ((map_of t)(k |-> case map_of t k of None \ v + | Some w \ f k w v)) x" +unfolding insertwithkey_def using assms +by (simp add:map_of_ins) + +definition + insertw_def: "insertwith f = insertwithkey (\_. f)" + +lemma insertw_st: "st t \ st (insertwith f k v t)" by (simp add: insertwk_st insertw_def) +theorem insertw_isrbt: "isrbt t \ isrbt (insertwith f k v t)" by (simp add: insertwk_isrbt insertw_def) + +lemma map_of_insertw: + assumes "isrbt t" + shows "map_of (insertwith f k v t) = (map_of t)(k \ (if k:dom (map_of t) then f (the (map_of t k)) v else v))" +using assms +unfolding insertw_def +by (rule_tac ext) (cases "map_of t k", auto simp:map_of_insertwk dom_def) + + +definition + "insrt k v t = insertwithkey (\_ _ nv. nv) k v t" + +lemma insrt_st: "st t \ st (insrt k v t)" by (simp add: insertwk_st insrt_def) +theorem insrt_isrbt: "isrbt t \ isrbt (insrt k v t)" by (simp add: insertwk_isrbt insrt_def) + +lemma map_of_insert: + assumes "isrbt t" + shows "map_of (insrt k v t) = (map_of t)(k\v)" +unfolding insrt_def +using assms +by (rule_tac ext) (simp add: map_of_insertwk split:option.split) + + +subsection {* Deletion *} + +(*definition + [simp]: "ibn t = (bh t > 0 \ treec t = B)" +*) +lemma bh_paintR'[simp]: "treec t = B \ bh (paint R t) = bh t - 1" +by (cases t rule: rbt_cases) auto + +fun + balleft :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balleft (Tr R a k x b) s y c = Tr R (Tr B a k x b) s y c" | + "balleft bl k x (Tr B a s y b) = balance bl k x (Tr R a s y b)" | + "balleft bl k x (Tr R (Tr B a s y b) t z c) = Tr R (Tr B bl k x a) s y (balance b t z (paint R c))" | + "balleft t k x s = Empty" + +lemma balleft_inv2_with_inv1: + assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "inv1 rt" + shows "bh (balleft lt k v rt) = bh lt + 1" + and "inv2 (balleft lt k v rt)" +using assms +by (induct lt k v rt rule: balleft.induct) (auto simp: balance_inv2 balance_bh) + +lemma balleft_inv2_app: + assumes "inv2 lt" "inv2 rt" "bh lt + 1 = bh rt" "treec rt = B" + shows "inv2 (balleft lt k v rt)" + "bh (balleft lt k v rt) = bh rt" +using assms +by (induct lt k v rt rule: balleft.induct) (auto simp add: balance_inv2 balance_bh)+ + +lemma balleft_inv1: "\inv1l a; inv1 b; treec b = B\ \ inv1 (balleft a k x b)" + by (induct a k x b rule: balleft.induct) (simp add: balance_inv1)+ + +lemma balleft_inv1l: "\ inv1l lt; inv1 rt \ \ inv1l (balleft lt k x rt)" +by (induct lt k x rt rule: balleft.induct) (auto simp: balance_inv1) + +lemma balleft_st: "\ st l; st r; tlt k l; tgt k r \ \ st (balleft l k v r)" +apply (induct l k v r rule: balleft.induct) +apply (auto simp: balance_st) +apply (unfold tgt_prop tlt_prop) +by force+ + +lemma balleft_tgt: + fixes k :: "'a::order" + assumes "k \| a" "k \| b" "k < x" + shows "k \| balleft a x t b" +using assms +by (induct a x t b rule: balleft.induct) auto + +lemma balleft_tlt: + fixes k :: "'a::order" + assumes "a |\ k" "b |\ k" "x < k" + shows "balleft a x t b |\ k" +using assms +by (induct a x t b rule: balleft.induct) auto + +lemma balleft_pit: + assumes "inv1l l" "inv1 r" "bh l + 1 = bh r" + shows "pin_tree k v (balleft l a b r) = (pin_tree k v l \ k = a \ v = b \ pin_tree k v r)" +using assms +by (induct l k v r rule: balleft.induct) (auto simp: balance_pit) + +fun + balright :: "('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" +where + "balright a k x (Tr R b s y c) = Tr R a k x (Tr B b s y c)" | + "balright (Tr B a k x b) s y bl = balance (Tr R a k x b) s y bl" | + "balright (Tr R a k x (Tr B b s y c)) t z bl = Tr R (balance (paint R a) k x b) s y (Tr B c t z bl)" | + "balright t k x s = Empty" + +lemma balright_inv2_with_inv1: + assumes "inv2 lt" "inv2 rt" "bh lt = bh rt + 1" "inv1 lt" + shows "inv2 (balright lt k v rt) \ bh (balright lt k v rt) = bh lt" +using assms +by (induct lt k v rt rule: balright.induct) (auto simp: balance_inv2 balance_bh) + +lemma balright_inv1: "\inv1 a; inv1l b; treec a = B\ \ inv1 (balright a k x b)" +by (induct a k x b rule: balright.induct) (simp add: balance_inv1)+ + +lemma balright_inv1l: "\ inv1 lt; inv1l rt \ \inv1l (balright lt k x rt)" +by (induct lt k x rt rule: balright.induct) (auto simp: balance_inv1) + +lemma balright_st: "\ st l; st r; tlt k l; tgt k r \ \ st (balright l k v r)" +apply (induct l k v r rule: balright.induct) +apply (auto simp:balance_st) +apply (unfold tlt_prop tgt_prop) +by force+ + +lemma balright_tgt: + fixes k :: "'a::order" + assumes "k \| a" "k \| b" "k < x" + shows "k \| balright a x t b" +using assms by (induct a x t b rule: balright.induct) auto + +lemma balright_tlt: + fixes k :: "'a::order" + assumes "a |\ k" "b |\ k" "x < k" + shows "balright a x t b |\ k" +using assms by (induct a x t b rule: balright.induct) auto + +lemma balright_pit: + assumes "inv1 l" "inv1l r" "bh l = bh r + 1" "inv2 l" "inv2 r" + shows "pin_tree x y (balright l k v r) = (pin_tree x y l \ x = k \ y = v \ pin_tree x y r)" +using assms by (induct l k v r rule: balright.induct) (auto simp: balance_pit) + + +text {* app *} + +fun + app :: "('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" +where + "app Empty x = x" +| "app x Empty = x" +| "app (Tr R a k x b) (Tr R c s y d) = (case (app b c) of + Tr R b2 t z c2 \ (Tr R (Tr R a k x b2) t z (Tr R c2 s y d)) | + bc \ Tr R a k x (Tr R bc s y d))" +| "app (Tr B a k x b) (Tr B c s y d) = (case (app b c) of + Tr R b2 t z c2 \ Tr R (Tr B a k x b2) t z (Tr B c2 s y d) | + bc \ balleft a k x (Tr B bc s y d))" +| "app a (Tr R b k x c) = Tr R (app a b) k x c" +| "app (Tr R a k x b) c = Tr R a k x (app b c)" + +lemma app_inv2: + assumes "inv2 lt" "inv2 rt" "bh lt = bh rt" + shows "bh (app lt rt) = bh lt" "inv2 (app lt rt)" +using assms +by (induct lt rt rule: app.induct) + (auto simp: balleft_inv2_app split: rbt.splits color.splits) + +lemma app_inv1: + assumes "inv1 lt" "inv1 rt" + shows "treec lt = B \ treec rt = B \ inv1 (app lt rt)" + "inv1l (app lt rt)" +using assms +by (induct lt rt rule: app.induct) + (auto simp: balleft_inv1 split: rbt.splits color.splits) + +lemma app_tgt[simp]: + fixes k :: "'a::linorder" + assumes "k \| l" "k \| r" + shows "k \| app l r" +using assms +by (induct l r rule: app.induct) + (auto simp: balleft_tgt split:rbt.splits color.splits) + +lemma app_tlt[simp]: + fixes k :: "'a::linorder" + assumes "l |\ k" "r |\ k" + shows "app l r |\ k" +using assms +by (induct l r rule: app.induct) + (auto simp: balleft_tlt split:rbt.splits color.splits) + +lemma app_st: + fixes k :: "'a::linorder" + assumes "st l" "st r" "l |\ k" "k \| r" + shows "st (app l r)" +using assms proof (induct l r rule: app.induct) + case (3 a x v b c y w d) + hence ineqs: "a |\ x" "x \| b" "b |\ k" "k \| c" "c |\ y" "y \| d" + by auto + with 3 + show ?case + apply (cases "app b c" rule: rbt_cases) + apply auto + by (metis app_tgt app_tlt ineqs ineqs tlt.simps(2) tgt.simps(2) tgt_trans tlt_trans)+ +next + case (4 a x v b c y w d) + hence "x < k \ tgt k c" by simp + hence "tgt x c" by (blast dest: tgt_trans) + with 4 have 2: "tgt x (app b c)" by (simp add: app_tgt) + from 4 have "k < y \ tlt k b" by simp + hence "tlt y b" by (blast dest: tlt_trans) + with 4 have 3: "tlt y (app b c)" by (simp add: app_tlt) + show ?case + proof (cases "app b c" rule: rbt_cases) + case Empty + from 4 have "x < y \ tgt y d" by auto + hence "tgt x d" by (blast dest: tgt_trans) + with 4 Empty have "st a" and "st (Tr B Empty y w d)" and "tlt x a" and "tgt x (Tr B Empty y w d)" by auto + with Empty show ?thesis by (simp add: balleft_st) + next + case (Red lta va ka rta) + with 2 4 have "x < va \ tlt x a" by simp + hence 5: "tlt va a" by (blast dest: tlt_trans) + from Red 3 4 have "va < y \ tgt y d" by simp + hence "tgt va d" by (blast dest: tgt_trans) + with Red 2 3 4 5 show ?thesis by simp + next + case (Black lta va ka rta) + from 4 have "x < y \ tgt y d" by auto + hence "tgt x d" by (blast dest: tgt_trans) + with Black 2 3 4 have "st a" and "st (Tr B (app b c) y w d)" and "tlt x a" and "tgt x (Tr B (app b c) y w d)" by auto + with Black show ?thesis by (simp add: balleft_st) + qed +next + case (5 va vb vd vc b x w c) + hence "k < x \ tlt k (Tr B va vb vd vc)" by simp + hence "tlt x (Tr B va vb vd vc)" by (blast dest: tlt_trans) + with 5 show ?case by (simp add: app_tlt) +next + case (6 a x v b va vb vd vc) + hence "x < k \ tgt k (Tr B va vb vd vc)" by simp + hence "tgt x (Tr B va vb vd vc)" by (blast dest: tgt_trans) + with 6 show ?case by (simp add: app_tgt) +qed simp+ + +lemma app_pit: + assumes "inv2 l" "inv2 r" "bh l = bh r" "inv1 l" "inv1 r" + shows "pin_tree k v (app l r) = (pin_tree k v l \ pin_tree k v r)" +using assms +proof (induct l r rule: app.induct) + case (4 _ _ _ b c) + hence a: "bh (app b c) = bh b" by (simp add: app_inv2) + from 4 have b: "inv1l (app b c)" by (simp add: app_inv1) + + show ?case + proof (cases "app b c" rule: rbt_cases) + case Empty + with 4 a show ?thesis by (auto simp: balleft_pit) + next + case (Red lta ka va rta) + with 4 show ?thesis by auto + next + case (Black lta ka va rta) + with a b 4 show ?thesis by (auto simp: balleft_pit) + qed +qed (auto split: rbt.splits color.splits) + +fun + delformLeft :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and + delformRight :: "('a\linorder) \ ('a,'b) rbt \ 'a \ 'b \ ('a,'b) rbt \ ('a,'b) rbt" and + del :: "('a\linorder) \ ('a,'b) rbt \ ('a,'b) rbt" +where + "del x Empty = Empty" | + "del x (Tr c a y s b) = (if x < y then delformLeft x a y s b else (if x > y then delformRight x a y s b else app a b))" | + "delformLeft x (Tr B lt z v rt) y s b = balleft (del x (Tr B lt z v rt)) y s b" | + "delformLeft x a y s b = Tr R (del x a) y s b" | + "delformRight x a y s (Tr B lt z v rt) = balright a y s (del x (Tr B lt z v rt))" | + "delformRight x a y s b = Tr R a y s (del x b)" + +lemma + assumes "inv2 lt" "inv1 lt" + shows + "\inv2 rt; bh lt = bh rt; inv1 rt\ \ + inv2 (delformLeft x lt k v rt) \ bh (delformLeft x lt k v rt) = bh lt \ (treec lt = B \ treec rt = B \ inv1 (delformLeft x lt k v rt) \ (treec lt \ B \ treec rt \ B) \ inv1l (delformLeft x lt k v rt))" + and "\inv2 rt; bh lt = bh rt; inv1 rt\ \ + inv2 (delformRight x lt k v rt) \ bh (delformRight x lt k v rt) = bh lt \ (treec lt = B \ treec rt = B \ inv1 (delformRight x lt k v rt) \ (treec lt \ B \ treec rt \ B) \ inv1l (delformRight x lt k v rt))" + and del_inv1_inv2: "inv2 (del x lt) \ (treec lt = R \ bh (del x lt) = bh lt \ inv1 (del x lt) + \ treec lt = B \ bh (del x lt) = bh lt - 1 \ inv1l (del x lt))" +using assms +proof (induct x lt k v rt and x lt k v rt and x lt rule: delformLeft_delformRight_del.induct) +case (2 y c _ y') + have "y = y' \ y < y' \ y > y'" by auto + thus ?case proof (elim disjE) + assume "y = y'" + with 2 show ?thesis by (cases c) (simp add: app_inv2 app_inv1)+ + next + assume "y < y'" + with 2 show ?thesis by (cases c) auto + next + assume "y' < y" + with 2 show ?thesis by (cases c) auto + qed +next + case (3 y lt z v rta y' ss bb) + thus ?case by (cases "treec (Tr B lt z v rta) = B \ treec bb = B") (simp add: balleft_inv2_with_inv1 balleft_inv1 balleft_inv1l)+ +next + case (5 y a y' ss lt z v rta) + thus ?case by (cases "treec a = B \ treec (Tr B lt z v rta) = B") (simp add: balright_inv2_with_inv1 balright_inv1 balright_inv1l)+ +next + case ("6_1" y a y' ss) thus ?case by (cases "treec a = B \ treec Empty = B") simp+ +qed auto + +lemma + delformLeft_tlt: "\tlt v lt; tlt v rt; k < v\ \ tlt v (delformLeft x lt k y rt)" + and delformRight_tlt: "\tlt v lt; tlt v rt; k < v\ \ tlt v (delformRight x lt k y rt)" + and del_tlt: "tlt v lt \ tlt v (del x lt)" +by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct) + (auto simp: balleft_tlt balright_tlt) + +lemma delformLeft_tgt: "\tgt v lt; tgt v rt; k > v\ \ tgt v (delformLeft x lt k y rt)" + and delformRight_tgt: "\tgt v lt; tgt v rt; k > v\ \ tgt v (delformRight x lt k y rt)" + and del_tgt: "tgt v lt \ tgt v (del x lt)" +by (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct) + (auto simp: balleft_tgt balright_tgt) + +lemma "\st lt; st rt; tlt k lt; tgt k rt\ \ st (delformLeft x lt k y rt)" + and "\st lt; st rt; tlt k lt; tgt k rt\ \ st (delformRight x lt k y rt)" + and del_st: "st lt \ st (del x lt)" +proof (induct x lt k y rt and x lt k y rt and x lt rule: delformLeft_delformRight_del.induct) + case (3 x lta zz v rta yy ss bb) + from 3 have "tlt yy (Tr B lta zz v rta)" by simp + hence "tlt yy (del x (Tr B lta zz v rta))" by (rule del_tlt) + with 3 show ?case by (simp add: balleft_st) +next + case ("4_2" x vaa vbb vdd vc yy ss bb) + hence "tlt yy (Tr R vaa vbb vdd vc)" by simp + hence "tlt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tlt) + with "4_2" show ?case by simp +next + case (5 x aa yy ss lta zz v rta) + hence "tgt yy (Tr B lta zz v rta)" by simp + hence "tgt yy (del x (Tr B lta zz v rta))" by (rule del_tgt) + with 5 show ?case by (simp add: balright_st) +next + case ("6_2" x aa yy ss vaa vbb vdd vc) + hence "tgt yy (Tr R vaa vbb vdd vc)" by simp + hence "tgt yy (del x (Tr R vaa vbb vdd vc))" by (rule del_tgt) + with "6_2" show ?case by simp +qed (auto simp: app_st) + +lemma "\st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x < kt\ \ pin_tree k v (delformLeft x lt kt y rt) = (False \ (x \ k \ pin_tree k v (Tr c lt kt y rt)))" + and "\st lt; st rt; tlt kt lt; tgt kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bh lt = bh rt; x > kt\ \ pin_tree k v (delformRight x lt kt y rt) = (False \ (x \ k \ pin_tree k v (Tr c lt kt y rt)))" + and del_pit: "\st t; inv1 t; inv2 t\ \ pin_tree k v (del x t) = (False \ (x \ k \ pin_tree k v t))" +proof (induct x lt kt y rt and x lt kt y rt and x t rule: delformLeft_delformRight_del.induct) + case (2 xx c aa yy ss bb) + have "xx = yy \ xx < yy \ xx > yy" by auto + from this 2 show ?case proof (elim disjE) + assume "xx = yy" + with 2 show ?thesis proof (cases "xx = k") + case True + from 2 `xx = yy` `xx = k` have "st (Tr c aa yy ss bb) \ k = yy" by simp + hence "\ pin_tree k v aa" "\ pin_tree k v bb" by (auto simp: tlt_nit tgt_prop) + with `xx = yy` 2 `xx = k` show ?thesis by (simp add: app_pit) + qed (simp add: app_pit) + qed simp+ +next + case (3 xx lta zz vv rta yy ss bb) + def mt[simp]: mt == "Tr B lta zz vv rta" + from 3 have "inv2 mt \ inv1 mt" by simp + hence "inv2 (del xx mt) \ (treec mt = R \ bh (del xx mt) = bh mt \ inv1 (del xx mt) \ treec mt = B \ bh (del xx mt) = bh mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) + with 3 have 4: "pin_tree k v (delformLeft xx mt yy ss bb) = (False \ xx \ k \ pin_tree k v mt \ (k = yy \ v = ss) \ pin_tree k v bb)" by (simp add: balleft_pit) + thus ?case proof (cases "xx = k") + case True + from 3 True have "tgt yy bb \ yy > k" by simp + hence "tgt k bb" by (blast dest: tgt_trans) + with 3 4 True show ?thesis by (auto simp: tgt_nit) + qed auto +next + case ("4_1" xx yy ss bb) + show ?case proof (cases "xx = k") + case True + with "4_1" have "tgt yy bb \ k < yy" by simp + hence "tgt k bb" by (blast dest: tgt_trans) + with "4_1" `xx = k` + have "pin_tree k v (Tr R Empty yy ss bb) = pin_tree k v Empty" by (auto simp: tgt_nit) + thus ?thesis by auto + qed simp+ +next + case ("4_2" xx vaa vbb vdd vc yy ss bb) + thus ?case proof (cases "xx = k") + case True + with "4_2" have "k < yy \ tgt yy bb" by simp + hence "tgt k bb" by (blast dest: tgt_trans) + with True "4_2" show ?thesis by (auto simp: tgt_nit) + qed simp +next + case (5 xx aa yy ss lta zz vv rta) + def mt[simp]: mt == "Tr B lta zz vv rta" + from 5 have "inv2 mt \ inv1 mt" by simp + hence "inv2 (del xx mt) \ (treec mt = R \ bh (del xx mt) = bh mt \ inv1 (del xx mt) \ treec mt = B \ bh (del xx mt) = bh mt - 1 \ inv1l (del xx mt))" by (blast dest: del_inv1_inv2) + with 5 have 3: "pin_tree k v (delformRight xx aa yy ss mt) = (pin_tree k v aa \ (k = yy \ v = ss) \ False \ xx \ k \ pin_tree k v mt)" by (simp add: balright_pit) + thus ?case proof (cases "xx = k") + case True + from 5 True have "tlt yy aa \ yy < k" by simp + hence "tlt k aa" by (blast dest: tlt_trans) + with 3 5 True show ?thesis by (auto simp: tlt_nit) + qed auto +next + case ("6_1" xx aa yy ss) + show ?case proof (cases "xx = k") + case True + with "6_1" have "tlt yy aa \ k > yy" by simp + hence "tlt k aa" by (blast dest: tlt_trans) + with "6_1" `xx = k` show ?thesis by (auto simp: tlt_nit) + qed simp +next + case ("6_2" xx aa yy ss vaa vbb vdd vc) + thus ?case proof (cases "xx = k") + case True + with "6_2" have "k > yy \ tlt yy aa" by simp + hence "tlt k aa" by (blast dest: tlt_trans) + with True "6_2" show ?thesis by (auto simp: tlt_nit) + qed simp +qed simp + + +definition delete where + delete_def: "delete k t = paint B (del k t)" + +theorem delete_isrbt[simp]: assumes "isrbt t" shows "isrbt (delete k t)" +proof - + from assms have "inv2 t" and "inv1 t" unfolding isrbt_def by auto + hence "inv2 (del k t) \ (treec t = R \ bh (del k t) = bh t \ inv1 (del k t) \ treec t = B \ bh (del k t) = bh t - 1 \ inv1l (del k t))" by (rule del_inv1_inv2) + hence "inv2 (del k t) \ inv1l (del k t)" by (cases "treec t") auto + with assms show ?thesis + unfolding isrbt_def delete_def + by (auto intro: paint_st del_st) +qed + +lemma delete_pit: + assumes "isrbt t" + shows "pin_tree k v (delete x t) = (x \ k \ pin_tree k v t)" + using assms unfolding isrbt_def delete_def + by (auto simp: del_pit) + +lemma map_of_delete: + assumes isrbt: "isrbt t" + shows "map_of (delete k t) = (map_of t)|`(-{k})" +proof + fix x + show "map_of (delete k t) x = (map_of t |` (-{k})) x" + proof (cases "x = k") + assume "x = k" + with isrbt show ?thesis + by (cases "map_of (delete k t) k") (auto simp: mapof_pit delete_pit) + next + assume "x \ k" + thus ?thesis + by auto (metis isrbt delete_isrbt delete_pit isrbt_st mapof_from_pit) + qed +qed + +subsection {* Union *} + +primrec + unionwithkey :: "('a\linorder \ 'b \ 'b \ 'b) \ ('a,'b) rbt \ ('a,'b) rbt \ ('a,'b) rbt" +where + "unionwithkey f t Empty = t" +| "unionwithkey f t (Tr c lt k v rt) = unionwithkey f (unionwithkey f (insertwithkey f k v t) lt) rt" + +lemma unionwk_st: "st lt \ st (unionwithkey f lt rt)" + by (induct rt arbitrary: lt) (auto simp: insertwk_st) +theorem unionwk_isrbt[simp]: "isrbt lt \ isrbt (unionwithkey f lt rt)" + by (induct rt arbitrary: lt) (simp add: insertwk_isrbt)+ + +definition + unionwith where + "unionwith f = unionwithkey (\_. f)" + +theorem unionw_isrbt: "isrbt lt \ isrbt (unionwith f lt rt)" unfolding unionwith_def by simp + +definition union where + "union = unionwithkey (%_ _ rv. rv)" + +theorem union_isrbt: "isrbt lt \ isrbt (union lt rt)" unfolding union_def by simp + +lemma union_Tr[simp]: + "union t (Tr c lt k v rt) = union (union (insrt k v t) lt) rt" + unfolding union_def insrt_def + by simp + +lemma map_of_union: + assumes "isrbt s" "st t" + shows "map_of (union s t) = map_of s ++ map_of t" +using assms +proof (induct t arbitrary: s) + case Empty thus ?case by (auto simp: union_def) +next + case (Tr c l k v r s) + hence strl: "st r" "st l" "l |\ k" "k \| r" by auto + + have meq: "map_of s(k \ v) ++ map_of l ++ map_of r = + map_of s ++ + (\a. if a < k then map_of l a + else if k < a then map_of r a else Some v)" (is "?m1 = ?m2") + proof (rule ext) + fix a + + have "k < a \ k = a \ k > a" by auto + thus "?m1 a = ?m2 a" + proof (elim disjE) + assume "k < a" + with `l |\ k` have "l |\ a" by (rule tlt_trans) + with `k < a` show ?thesis + by (auto simp: map_add_def split: option.splits) + next + assume "k = a" + with `l |\ k` `k \| r` + show ?thesis by (auto simp: map_add_def) + next + assume "a < k" + from this `k \| r` have "a \| r" by (rule tgt_trans) + with `a < k` show ?thesis + by (auto simp: map_add_def split: option.splits) + qed + qed + + from Tr + have IHs: + "map_of (union (union (insrt k v s) l) r) = map_of (union (insrt k v s) l) ++ map_of r" + "map_of (union (insrt k v s) l) = map_of (insrt k v s) ++ map_of l" + by (auto intro: union_isrbt insrt_isrbt) + + with meq show ?case + by (auto simp: map_of_insert[OF Tr(3)]) +qed + +subsection {* Adjust *} + +primrec + adjustwithkey :: "('a \ 'b \ 'b) \ ('a\linorder) \ ('a,'b) rbt \ ('a,'b) rbt" +where + "adjustwithkey f k Empty = Empty" +| "adjustwithkey f k (Tr c lt x v rt) = (if k < x then (Tr c (adjustwithkey f k lt) x v rt) else if k > x then (Tr c lt x v (adjustwithkey f k rt)) else (Tr c lt x (f x v) rt))" + +lemma adjustwk_treec: "treec (adjustwithkey f k t) = treec t" by (induct t) simp+ +lemma adjustwk_inv1: "inv1 (adjustwithkey f k t) = inv1 t" by (induct t) (simp add: adjustwk_treec)+ +lemma adjustwk_inv2: "inv2 (adjustwithkey f k t) = inv2 t" "bh (adjustwithkey f k t) = bh t" by (induct t) simp+ +lemma adjustwk_tgt: "tgt k (adjustwithkey f kk t) = tgt k t" by (induct t) simp+ +lemma adjustwk_tlt: "tlt k (adjustwithkey f kk t) = tlt k t" by (induct t) simp+ +lemma adjustwk_st: "st (adjustwithkey f k t) = st t" by (induct t) (simp add: adjustwk_tlt adjustwk_tgt)+ + +theorem adjustwk_isrbt[simp]: "isrbt (adjustwithkey f k t) = isrbt t" +unfolding isrbt_def by (simp add: adjustwk_inv2 adjustwk_treec adjustwk_st adjustwk_inv1 ) + +theorem adjustwithkey_map[simp]: + "map_of (adjustwithkey f k t) x = + (if x = k then case map_of t x of None \ None | Some y \ Some (f k y) + else map_of t x)" +by (induct t arbitrary: x) (auto split:option.splits) + +definition adjust where + "adjust f = adjustwithkey (\_. f)" + +theorem adjust_isrbt[simp]: "isrbt (adjust f k t) = isrbt t" unfolding adjust_def by simp + +theorem adjust_map[simp]: + "map_of (adjust f k t) x = + (if x = k then case map_of t x of None \ None | Some y \ Some (f y) + else map_of t x)" +unfolding adjust_def by simp + +subsection {* Map *} + +primrec + mapwithkey :: "('a::linorder \ 'b \ 'c) \ ('a,'b) rbt \ ('a,'c) rbt" +where + "mapwithkey f Empty = Empty" +| "mapwithkey f (Tr c lt k v rt) = Tr c (mapwithkey f lt) k (f k v) (mapwithkey f rt)" + +theorem mapwk_keys[simp]: "keys (mapwithkey f t) = keys t" by (induct t) auto +lemma mapwk_tgt: "tgt k (mapwithkey f t) = tgt k t" by (induct t) simp+ +lemma mapwk_tlt: "tlt k (mapwithkey f t) = tlt k t" by (induct t) simp+ +lemma mapwk_st: "st (mapwithkey f t) = st t" by (induct t) (simp add: mapwk_tlt mapwk_tgt)+ +lemma mapwk_treec: "treec (mapwithkey f t) = treec t" by (induct t) simp+ +lemma mapwk_inv1: "inv1 (mapwithkey f t) = inv1 t" by (induct t) (simp add: mapwk_treec)+ +lemma mapwk_inv2: "inv2 (mapwithkey f t) = inv2 t" "bh (mapwithkey f t) = bh t" by (induct t) simp+ +theorem mapwk_isrbt[simp]: "isrbt (mapwithkey f t) = isrbt t" +unfolding isrbt_def by (simp add: mapwk_inv1 mapwk_inv2 mapwk_st mapwk_treec) + +theorem map_of_mapwk[simp]: "map_of (mapwithkey f t) x = option_map (f x) (map_of t x)" +by (induct t) auto + +definition map +where map_def: "map f == mapwithkey (\_. f)" + +theorem map_keys[simp]: "keys (map f t) = keys t" unfolding map_def by simp +theorem map_isrbt[simp]: "isrbt (map f t) = isrbt t" unfolding map_def by simp +theorem map_of_map[simp]: "map_of (map f t) = option_map f o map_of t" + by (rule ext) (simp add:map_def) + +subsection {* Fold *} + +text {* The following is still incomplete... *} + +primrec + foldwithkey :: "('a::linorder \ 'b \ 'c \ 'c) \ ('a,'b) rbt \ 'c \ 'c" +where + "foldwithkey f Empty v = v" +| "foldwithkey f (Tr c lt k x rt) v = foldwithkey f rt (f k x (foldwithkey f lt v))" + +primrec alist_of +where + "alist_of Empty = []" +| "alist_of (Tr _ l k v r) = alist_of l @ (k,v) # alist_of r" + +lemma map_of_alist_of: + shows "st t \ Map.map_of (alist_of t) = map_of t" + oops + +lemma fold_alist_fold: + "foldwithkey f t x = foldl (\x (k,v). f k v x) x (alist_of t)" +by (induct t arbitrary: x) auto + +lemma alist_pit[simp]: "(k, v) \ set (alist_of t) = pin_tree k v t" +by (induct t) auto + +lemma sorted_alist: + "st t \ sorted (List.map fst (alist_of t))" +by (induct t) + (force simp: sorted_append sorted_Cons tlgt_props + dest!:pint_keys)+ + +lemma distinct_alist: + "st t \ distinct (List.map fst (alist_of t))" +by (induct t) + (force simp: sorted_append sorted_Cons tlgt_props + dest!:pint_keys)+ +(*>*) + +text {* + This theory defines purely functional red-black trees which can be + used as an efficient representation of finite maps. +*} + +subsection {* Data type and invariant *} + +text {* + The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of + type @{typ "'k"} and values of type @{typ "'v"}. To function + properly, the key type must belong to the @{text "linorder"} class. + + A value @{term t} of this type is a valid red-black tree if it + satisfies the invariant @{text "isrbt t"}. + This theory provides lemmas to prove that the invariant is + satisfied throughout the computation. + + The interpretation function @{const "map_of"} returns the partial + map represented by a red-black tree: + @{term_type[display] "map_of"} + + This function should be used for reasoning about the semantics of the RBT + operations. Furthermore, it implements the lookup functionality for + the data structure: It is executable and the lookup is performed in + $O(\log n)$. +*} + +subsection {* Operations *} + +text {* + Currently, the following operations are supported: + + @{term_type[display] "Empty"} + Returns the empty tree. $O(1)$ + + @{term_type[display] "insrt"} + Updates the map at a given position. $O(\log n)$ + + @{term_type[display] "delete"} + Deletes a map entry at a given position. $O(\log n)$ + + @{term_type[display] "union"} + Forms the union of two trees, preferring entries from the first one. + + @{term_type[display] "map"} + Maps a function over the values of a map. $O(n)$ +*} + + +subsection {* Invariant preservation *} + +text {* + \noindent + @{thm Empty_isrbt}\hfill(@{text "Empty_isrbt"}) + + \noindent + @{thm insrt_isrbt}\hfill(@{text "insrt_isrbt"}) + + \noindent + @{thm delete_isrbt}\hfill(@{text "delete_isrbt"}) + + \noindent + @{thm union_isrbt}\hfill(@{text "union_isrbt"}) + + \noindent + @{thm map_isrbt}\hfill(@{text "map_isrbt"}) +*} + +subsection {* Map Semantics *} + +text {* + \noindent + \underline{@{text "map_of_Empty"}} + @{thm[display] map_of_Empty} + \vspace{1ex} + + \noindent + \underline{@{text "map_of_insert"}} + @{thm[display] map_of_insert} + \vspace{1ex} + + \noindent + \underline{@{text "map_of_delete"}} + @{thm[display] map_of_delete} + \vspace{1ex} + + \noindent + \underline{@{text "map_of_union"}} + @{thm[display] map_of_union} + \vspace{1ex} + + \noindent + \underline{@{text "map_of_map"}} + @{thm[display] map_of_map} + \vspace{1ex} +*} + +end