# HG changeset patch # User blanchet # Date 1410288696 -7200 # Node ID 52c35a59bbf53d67e80ca34cf8451dfb6f34f768 # Parent b6603402554862ba8315137ba5a6b9996eaf9b63 ported Decision_Procs to new datatypes diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Commutative_Ring.thy --- a/src/HOL/Decision_Procs/Commutative_Ring.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Commutative_Ring.thy Tue Sep 09 20:51:36 2014 +0200 @@ -60,6 +60,9 @@ text {* Defining the basic ring operations on normalized polynomials *} +lemma pol_size_nz[simp]: "size (p :: 'a pol) \ 0" + by (cases p) simp_all + function add :: "'a::comm_ring pol \ 'a pol \ 'a pol" (infixl "\" 65) where "Pc a \ Pc b = Pc (a + b)" diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Commutative_Ring_Complete.thy --- a/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Tue Sep 09 20:51:36 2014 +0200 @@ -39,7 +39,7 @@ apply auto apply (cases P) apply auto - apply (case_tac pol2) + apply (rename_tac pol2, case_tac pol2) apply auto done @@ -48,14 +48,14 @@ apply auto apply (cases P) apply auto - apply (case_tac pol2) + apply (rename_tac pol2, case_tac pol2) apply auto done lemma mkPinj_cn: "y \ 0 \ isnorm Q \ isnorm (mkPinj y Q)" apply (auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split) - apply (case_tac nat, auto simp add: norm_Pinj_0_False) - apply (case_tac pol, auto) + apply (rename_tac nat a, case_tac nat, auto simp add: norm_Pinj_0_False) + apply (rename_tac pol a, case_tac pol, auto) apply (case_tac y, auto) done @@ -140,13 +140,13 @@ then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) with 4 show ?case - by (cases i) (simp, cases P2, auto, case_tac pol2, auto) + by (cases i) (simp, cases P2, auto, rename_tac pol2, case_tac pol2, auto) next case (5 P2 i Q2 c) then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) with 5 show ?case - by (cases i) (simp, cases P2, auto, case_tac pol2, auto) + by (cases i) (simp, cases P2, auto, rename_tac pol2, case_tac pol2, auto) next case (6 x P2 y Q2) then have Y0: "y > 0" diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Cooper.thy --- a/src/HOL/Decision_Procs/Cooper.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Cooper.thy Tue Sep 09 20:51:36 2014 +0200 @@ -276,7 +276,7 @@ using assms apply (induct a) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply simp_all done @@ -1126,7 +1126,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1143,7 +1143,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1160,7 +1160,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1177,7 +1177,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1194,7 +1194,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1211,7 +1211,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done next @@ -1242,7 +1242,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done } @@ -1292,7 +1292,7 @@ apply (auto simp add: Let_def split_def algebra_simps) apply (cases "?r") apply auto - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply auto done } diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Ferrack.thy --- a/src/HOL/Decision_Procs/Ferrack.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Ferrack.thy Tue Sep 09 20:51:36 2014 +0200 @@ -978,27 +978,27 @@ lemma lt: "numnoabs t \ Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) \ isrlfm (split lt (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma le: "numnoabs t \ Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) \ isrlfm (split le (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma gt: "numnoabs t \ Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) \ isrlfm (split gt (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma ge: "numnoabs t \ Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) \ isrlfm (split ge (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma eq: "numnoabs t \ Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) \ isrlfm (split eq (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma neq: "numnoabs t \ Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) \ isrlfm (split neq (rsplit0 t))" using rsplit0[where bs = "bs" and t="t"] -by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) +by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,rename_tac nat a b,case_tac "nat",auto) lemma conj_lin: "isrlfm p \ isrlfm q \ isrlfm (conj p q)" by (auto simp add: conj_def) diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/MIR.thy --- a/src/HOL/Decision_Procs/MIR.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/MIR.thy Tue Sep 09 20:51:36 2014 +0200 @@ -1722,7 +1722,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def,case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def,rename_tac nat a b,case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (Lt a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1747,7 +1747,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat",simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat",simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (Le a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1772,7 +1772,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (Gt a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1797,7 +1797,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (Ge a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1822,7 +1822,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (Eq a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1847,7 +1847,7 @@ have "?c = 0 \ (?c >0 \ ?c\0) \ (?c<0 \ ?c\0)" by arith moreover {assume "?c=0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" hence l: "?L (?l (NEq a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1876,7 +1876,7 @@ moreover {assume "?c=0" and "j\0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] rdvd_abs1[where d="j"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" and jnz: "j\0" hence l: "?L (?l (Dvd j a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -1922,7 +1922,7 @@ moreover {assume "?c=0" and "j\0" hence ?case using zsplit0_I[OF spl, where x="i" and bs="bs"] rdvd_abs1[where d="j"] - by (cases "?r", simp_all add: Let_def split_def, case_tac "nat", simp_all)} + by (cases "?r", simp_all add: Let_def split_def, rename_tac nat a b, case_tac "nat", simp_all)} moreover {assume cp: "?c > 0" and cnz: "?c\0" and jnz: "j\0" hence l: "?L (?l (NDvd j a))" by (simp add: nb Let_def split_def isint_Floor isint_neg) @@ -3714,7 +3714,7 @@ lemma lt_l: "isrlfm (rsplit lt a)" by (rule rsplit_l[where f="lt" and a="a"], auto simp add: lt_def, - case_tac s, simp_all, case_tac "nat", simp_all) + case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all) lemma le_mono: "\ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \ numbound0 s \ Ifm (x#bs) (le n s) = Ifm (x#bs) (Le a)" (is "\ a n s. ?N a = ?N (CN 0 n s) \ _ \ ?I (le n s) = ?I (Le a)") proof(clarify) @@ -3726,7 +3726,7 @@ lemma le_l: "isrlfm (rsplit le a)" by (rule rsplit_l[where f="le" and a="a"], auto simp add: le_def) -(case_tac s, simp_all, case_tac "nat",simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac "nat",simp_all) lemma gt_mono: "\ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \ numbound0 s \ Ifm (x#bs) (gt n s) = Ifm (x#bs) (Gt a)" (is "\ a n s. ?N a = ?N (CN 0 n s) \ _ \ ?I (gt n s) = ?I (Gt a)") proof(clarify) @@ -3737,7 +3737,7 @@ qed lemma gt_l: "isrlfm (rsplit gt a)" by (rule rsplit_l[where f="gt" and a="a"], auto simp add: gt_def) -(case_tac s, simp_all, case_tac "nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all) lemma ge_mono: "\ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \ numbound0 s \ Ifm (x#bs) (ge n s) = Ifm (x#bs) (Ge a)" (is "\ a n s . ?N a = ?N (CN 0 n s) \ _ \ ?I (ge n s) = ?I (Ge a)") proof(clarify) @@ -3748,7 +3748,7 @@ qed lemma ge_l: "isrlfm (rsplit ge a)" by (rule rsplit_l[where f="ge" and a="a"], auto simp add: ge_def) -(case_tac s, simp_all, case_tac "nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all) lemma eq_mono: "\ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \ numbound0 s \ Ifm (x#bs) (eq n s) = Ifm (x#bs) (Eq a)" (is "\ a n s. ?N a = ?N (CN 0 n s) \ _ \ ?I (eq n s) = ?I (Eq a)") proof(clarify) @@ -3758,7 +3758,7 @@ qed lemma eq_l: "isrlfm (rsplit eq a)" by (rule rsplit_l[where f="eq" and a="a"], auto simp add: eq_def) -(case_tac s, simp_all, case_tac"nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac"nat", simp_all) lemma neq_mono: "\ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) \ numbound0 s \ Ifm (x#bs) (neq n s) = Ifm (x#bs) (NEq a)" (is "\ a n s. ?N a = ?N (CN 0 n s) \ _ \ ?I (neq n s) = ?I (NEq a)") proof(clarify) @@ -3769,7 +3769,7 @@ lemma neq_l: "isrlfm (rsplit neq a)" by (rule rsplit_l[where f="neq" and a="a"], auto simp add: neq_def) -(case_tac s, simp_all, case_tac"nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac"nat", simp_all) lemma small_le: assumes u0:"0 \ u" and u1: "u < 1" @@ -3928,11 +3928,11 @@ lemma DVD_l: "isrlfm (rsplit (DVD i) a)" by (rule rsplit_l[where f="DVD i" and a="a"], auto simp add: DVD_def eq_def DVDJ_l) -(case_tac s, simp_all, case_tac "nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all) lemma NDVD_l: "isrlfm (rsplit (NDVD i) a)" by (rule rsplit_l[where f="NDVD i" and a="a"], auto simp add: NDVD_def neq_def NDVDJ_l) -(case_tac s, simp_all, case_tac "nat", simp_all) +(case_tac s, simp_all, rename_tac nat a b, case_tac "nat", simp_all) consts rlfm :: "fm \ fm" recdef rlfm "measure fmsize" @@ -3972,7 +3972,7 @@ proof (induct p) case (Lt a) hence "bound0 (Lt a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all) moreover {assume "bound0 (Lt a)" hence bn:"bound0 (simpfm (Lt a))" using simpfm_bound0 by blast @@ -3996,7 +3996,7 @@ next case (Le a) hence "bound0 (Le a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all) moreover { assume "bound0 (Le a)" hence bn:"bound0 (simpfm (Le a))" using simpfm_bound0 by blast @@ -4020,7 +4020,7 @@ next case (Gt a) hence "bound0 (Gt a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a, simp_all, rename_tac nat a b,case_tac "nat", simp_all) moreover {assume "bound0 (Gt a)" hence bn:"bound0 (simpfm (Gt a))" using simpfm_bound0 by blast @@ -4044,7 +4044,7 @@ next case (Ge a) hence "bound0 (Ge a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all) moreover { assume "bound0 (Ge a)" hence bn:"bound0 (simpfm (Ge a))" using simpfm_bound0 by blast @@ -4068,7 +4068,7 @@ next case (Eq a) hence "bound0 (Eq a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all) moreover { assume "bound0 (Eq a)" hence bn:"bound0 (simpfm (Eq a))" using simpfm_bound0 by blast @@ -4092,7 +4092,7 @@ next case (NEq a) hence "bound0 (NEq a) \ (\ c e. a = CN 0 c e \ c > 0 \ numbound0 e)" - by (cases a,simp_all, case_tac "nat", simp_all) + by (cases a,simp_all, rename_tac nat a b, case_tac "nat", simp_all) moreover {assume "bound0 (NEq a)" hence bn:"bound0 (simpfm (NEq a))" using simpfm_bound0 by blast diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy --- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Tue Sep 09 20:51:36 2014 +0200 @@ -1066,7 +1066,7 @@ and "islin (Le p)" and "islin (Eq p)" and "islin (NEq p)" - using nb by (cases p, auto, case_tac nat, auto)+ + using nb by (cases p, auto, rename_tac nat a b, case_tac nat, auto)+ definition "lt p = (case p of CP (C c) \ if 0>\<^sub>N c then T else F| _ \ Lt p)" definition "le p = (case p of CP (C c) \ if 0\\<^sub>N c then T else F | _ \ Le p)" @@ -1077,7 +1077,7 @@ apply (simp add: lt_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply (simp_all add: isnpoly_def) done @@ -1085,7 +1085,7 @@ apply (simp add: le_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply (simp_all add: isnpoly_def) done @@ -1093,7 +1093,7 @@ apply (simp add: eq_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply (simp_all add: isnpoly_def) done @@ -1104,9 +1104,9 @@ apply (simp add: lt_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply simp_all done @@ -1114,9 +1114,9 @@ apply (simp add: le_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply simp_all done @@ -1124,9 +1124,9 @@ apply (simp add: eq_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply simp_all done @@ -1134,9 +1134,9 @@ apply (simp add: neq_def eq_def) apply (cases p) apply simp_all - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a b, case_tac nat) apply simp_all done @@ -1276,7 +1276,7 @@ apply (simp add: lt_def) apply (cases t) apply auto - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done @@ -1284,7 +1284,7 @@ apply (simp add: le_def) apply (cases t) apply auto - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done @@ -1292,7 +1292,7 @@ apply (simp add: eq_def) apply (cases t) apply auto - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done @@ -1300,7 +1300,7 @@ apply (simp add: neq_def eq_def) apply (cases t) apply auto - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done @@ -1533,21 +1533,21 @@ lemma lt_qf[simp]: "qfree (lt t)" apply (cases t) apply (auto simp add: lt_def) - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done lemma le_qf[simp]: "qfree (le t)" apply (cases t) apply (auto simp add: le_def) - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done lemma eq_qf[simp]: "qfree (eq t)" apply (cases t) apply (auto simp add: eq_def) - apply (case_tac poly) + apply (rename_tac poly, case_tac poly) apply auto done diff -r b66034025548 -r 52c35a59bbf5 src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy --- a/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Tue Sep 09 20:51:36 2014 +0200 +++ b/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Tue Sep 09 20:51:36 2014 +0200 @@ -930,7 +930,7 @@ apply (induct p arbitrary: n0) apply auto apply atomize - apply (erule_tac x = "Suc nat" in allE) + apply (rename_tac nat a b, erule_tac x = "Suc nat" in allE) apply auto done @@ -1056,7 +1056,7 @@ lemma isnpolyh_Suc_const: "isnpolyh p (Suc n) \ isconstant p" apply (cases p) apply auto - apply (case_tac "nat") + apply (rename_tac nat a, case_tac "nat") apply simp_all done @@ -1144,7 +1144,7 @@ unfolding polypoly_def apply (cases p) apply auto - apply (case_tac nat) + apply (rename_tac nat a, case_tac nat) apply auto done @@ -2009,7 +2009,7 @@ unfolding isnonconstant_def apply (cases p) apply simp_all - apply (case_tac nat) + apply (rename_tac nat a, case_tac nat) apply auto done