# HG changeset patch # User blanchet # Date 1282557390 -7200 # Node ID 52ea97d95e4bed5194a156571377b50b576e0143 # Parent 5500241da479f08685697ca4796c3a4a3f0e79a3 "no_atp" a few facts that often lead to unsound proofs diff -r 5500241da479 -r 52ea97d95e4b src/HOL/Set.thy --- a/src/HOL/Set.thy Mon Aug 23 09:04:37 2010 +0200 +++ b/src/HOL/Set.thy Mon Aug 23 11:56:30 2010 +0200 @@ -852,7 +852,7 @@ lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" by blast -lemma image_subset_iff: "(f`A \ B) = (\x\A. f x \ B)" +lemma image_subset_iff [no_atp]: "(f`A \ B) = (\x\A. f x \ B)" -- {* This rewrite rule would confuse users if made default. *} by blast @@ -1203,7 +1203,7 @@ lemma Int_UNIV [simp,no_atp]: "(A \ B = UNIV) = (A = UNIV & B = UNIV)" by (fact inf_eq_top_iff) -lemma Int_subset_iff [simp]: "(C \ A \ B) = (C \ A & C \ B)" +lemma Int_subset_iff [no_atp, simp]: "(C \ A \ B) = (C \ A & C \ B)" by (fact le_inf_iff) lemma Int_Collect: "(x \ A \ {x. P x}) = (x \ A & P x)" @@ -1294,7 +1294,7 @@ lemma Un_empty [iff]: "(A \ B = {}) = (A = {} & B = {})" by (fact sup_eq_bot_iff) -lemma Un_subset_iff [simp]: "(A \ B \ C) = (A \ C & B \ C)" +lemma Un_subset_iff [no_atp, simp]: "(A \ B \ C) = (A \ C & B \ C)" by (fact le_sup_iff) lemma Un_Diff_Int: "(A - B) \ (A \ B) = A" @@ -1490,7 +1490,7 @@ lemma set_eq_subset: "(A = B) = (A \ B & B \ A)" by blast -lemma subset_iff: "(A \ B) = (\t. t \ A --> t \ B)" +lemma subset_iff [no_atp]: "(A \ B) = (\t. t \ A --> t \ B)" by blast lemma subset_iff_psubset_eq: "(A \ B) = ((A \ B) | (A = B))"