# HG changeset patch # User nipkow # Date 1199903030 -3600 # Node ID 536dfdc25e0a8056215bbe287ba86d0f56c814bb # Parent 14819a95cf7500028e38aa0d9e6854c016140cfe added simp attributes/ proofs fixed diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Hyperreal/Ln.thy --- a/src/HOL/Hyperreal/Ln.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Hyperreal/Ln.thy Wed Jan 09 19:23:50 2008 +0100 @@ -190,7 +190,7 @@ have "(1 - x) * (1 + x + x^2) = (1 - x^3)" by (simp add: ring_simps power2_eq_square power3_eq_cube) also have "... <= 1" - by (auto intro: zero_le_power simp add: a) + by (auto simp add: a) finally have "(1 - x) * (1 + x + x ^ 2) <= 1" . moreover have "0 < 1 + x + x^2" apply (rule add_pos_nonneg) diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Hyperreal/NthRoot.thy --- a/src/HOL/Hyperreal/NthRoot.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Hyperreal/NthRoot.thy Wed Jan 09 19:23:50 2008 +0100 @@ -328,7 +328,7 @@ unfolding isCont_def apply (rule LIM_I) apply (rule_tac x="r ^ n" in exI, safe) -apply (simp add: zero_less_power) +apply (simp) apply (simp add: real_root_abs [symmetric]) apply (rule_tac n="n" in power_less_imp_less_base, simp_all) done diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Hyperreal/Transcendental.thy Wed Jan 09 19:23:50 2008 +0100 @@ -740,7 +740,7 @@ apply (simp add: exp_def) apply (rule real_le_trans) apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) -apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff) +apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_mult_iff) done lemma exp_gt_one [simp]: "0 < (x::real) ==> 1 < exp x" @@ -1320,8 +1320,6 @@ thus ?thesis by (simp add: mult_ac) qed -declare zero_less_power [simp] - lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)" by simp diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Library/Parity.thy --- a/src/HOL/Library/Parity.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Library/Parity.thy Wed Jan 09 19:23:50 2008 +0100 @@ -245,8 +245,6 @@ apply (subst zero_le_odd_power [symmetric]) apply assumption+ apply (erule zero_le_even_power) - apply (subst zero_le_odd_power) - apply assumption+ done lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) = @@ -270,12 +268,6 @@ apply (frule order_le_imp_less_or_eq) apply simp apply (erule zero_le_even_power) - apply (subgoal_tac "0 <= x^n") - apply (frule order_le_imp_less_or_eq) - apply auto - apply (subst zero_le_odd_power) - apply assumption - apply (erule order_less_imp_le) done lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) = diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Real/RealPow.thy --- a/src/HOL/Real/RealPow.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Real/RealPow.thy Wed Jan 09 19:23:50 2008 +0100 @@ -29,7 +29,7 @@ lemma two_realpow_ge_one [simp]: "(1::real) \ 2 ^ n" -by (rule power_increasing[of 0 n "2::real", simplified]) +by simp lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" apply (induct "n") diff -r 14819a95cf75 -r 536dfdc25e0a src/HOL/Word/Num_Lemmas.thy --- a/src/HOL/Word/Num_Lemmas.thy Wed Jan 09 19:23:36 2008 +0100 +++ b/src/HOL/Word/Num_Lemmas.thy Wed Jan 09 19:23:50 2008 +0100 @@ -477,7 +477,7 @@ apply (drule le_iff_add [THEN iffD1]) apply (force simp: zpower_zadd_distrib) apply (rule mod_pos_pos_trivial) - apply (simp add: zero_le_power) + apply (simp) apply (rule power_strict_increasing) apply auto done