# HG changeset patch # User wenzelm # Date 1555258426 -7200 # Node ID 5389193228528ae2fe5302542848b8be54b2ab36 # Parent 48e8bbeef7d3235f54bec9595d51596457c29314 afford more examples; diff -r 48e8bbeef7d3 -r 538919322852 src/HOL/ex/Meson_Test.thy --- a/src/HOL/ex/Meson_Test.thy Sun Apr 14 17:37:05 2019 +0200 +++ b/src/HOL/ex/Meson_Test.thy Sun Apr 14 18:13:46 2019 +0200 @@ -304,7 +304,7 @@ BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & BOO002_0_eq INVERSE multiply add product sum equal & (~product(x::'a,x,x)) --> False" - oops + by meson (*51194 inferences so far. Searching to depth 13. 204.6 secs Strange! The previous problem also has 51194 inferences at depth 13. They @@ -314,7 +314,7 @@ BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & BOO002_0_eq INVERSE multiply add product sum equal & (~sum(x::'a,x,x)) --> False" - oops + by meson (*74799 inferences so far. Searching to depth 13. 290.0 secs*) lemma BOO005_1: @@ -322,7 +322,7 @@ BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & BOO002_0_eq INVERSE multiply add product sum equal & (~sum(x::'a,multiplicative_identity,multiplicative_identity)) --> False" - oops + by meson (*74799 inferences so far. Searching to depth 13. 314.6 secs*) lemma BOO006_1: @@ -330,7 +330,7 @@ BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & BOO002_0_eq INVERSE multiply add product sum equal & (~product(x::'a,additive_identity,additive_identity)) --> False" - oops + by meson (*5 inferences so far. Searching to depth 5. 1.3 secs*) lemma BOO011_1: @@ -434,7 +434,7 @@ (defined(a::'a,d)) & (identity_map(d)) & (~equal(domain(a),d)) --> False" - oops + by meson (*1728 inferences so far. Searching to depth 10. 5.8 secs*) lemma CAT007_1: @@ -453,7 +453,7 @@ (defined(a::'a,b)) & (defined(b::'a,c)) & (~defined(a::'a,compos(b::'a,c))) --> False" - oops + by meson (*1118 inferences so far. Searching to depth 8. 2.3 secs*) lemma COL001_2: @@ -505,7 +505,7 @@ (agreeable(c)) & (~agreeable(a)) & (equal(c::'a,compos(a::'a,b))) --> False" - oops + by meson (*13201 inferences so far. Searching to depth 11. 31.9 secs*) lemma COL075_2: @@ -517,7 +517,7 @@ (\A B. equal(A::'a,B) --> equal(b(A),b(B))) & (\C D. equal(C::'a,D) --> equal(c(C),c(D))) & (\Y. ~equal(apply(apply(Y::'a,b(Y)),c(Y)),apply(b(Y),b(Y)))) --> False" - oops + by meson (*33 inferences so far. Searching to depth 7. 0.1 secs*) lemma COM001_1: @@ -785,7 +785,7 @@ between equal equidistant & (equidistant(u::'a,v,w,x)) & (~equidistant(u::'a,v,x,w)) --> False" - oops + by meson (*382903 inferences so far. Searching to depth 9. 1022s (17 mins) on griffon*) lemma GEO027_3: @@ -895,7 +895,7 @@ (product(INVERSE(a),INVERSE(b),d)) & (\A C B. product(INVERSE(A),INVERSE(B),C) --> product(A::'a,C,B)) & (~product(c::'a,d,identity)) --> False" - oops + by meson (*2448 inferences so far. Searching to depth 10. 7.2 secs*) lemma GRP037_3: @@ -965,7 +965,7 @@ (\X Y W Z. product(X::'a,W,Y) & product(X::'a,Z,Y) --> equal(W::'a,Z)) & (\Y X W Z. product(W::'a,Y,X) & product(Z::'a,Y,X) --> equal(W::'a,Z)) & (\Z1 Z2 Y X. product(X::'a,Y,Z1) & product(X::'a,Z1,Z2) --> product(Z2::'a,Y,X)) --> False" - oops + by meson abbreviation "GRP004_0_ax INVERSE identity multiply equal \ (\X. equal(multiply(identity::'a,X),X)) & @@ -1034,7 +1034,7 @@ HEN002_0_ax identity Zero Divide equal mless_equal & HEN002_0_eq mless_equal Divide equal & (~equal(Divide(a::'a,a),Zero)) --> False" - oops + by meson (*202177 inferences so far. Searching to depth 14. 451 secs*) lemma HEN007_2: @@ -1065,7 +1065,7 @@ (quotient(z::'a,y,zQy)) & (quotient(z::'a,x,zQx)) & (~mless_equal(zQy::'a,zQx)) --> False" - oops + by meson (*60026 inferences so far. Searching to depth 12. 42.2 secs*) lemma HEN008_4: @@ -1081,7 +1081,7 @@ (\Y Z X. mless_equal(X::'a,Y) --> mless_equal(Divide(Z::'a,Y),Divide(Z::'a,X))) & (mless_equal(a::'a,b)) & (~mless_equal(Divide(a::'a,c),Divide(b::'a,c))) --> False" - oops + by meson (*3160 inferences so far. Searching to depth 11. 3.5 secs*) lemma HEN009_5: @@ -1109,7 +1109,7 @@ HEN002_0_ax identity Zero Divide equal mless_equal & HEN002_0_eq mless_equal Divide equal & (~mless_equal(a::'a,a)) --> False" - oops + by meson (*1063 inferences so far. Searching to depth 20. 1.0 secs*) @@ -1233,7 +1233,7 @@ (\G H I'. equal(G::'a,H) & left(G::'a,I') --> left(H::'a,I')) & (\J L K'. equal(J::'a,K') & left(L::'a,J) --> left(L::'a,K')) & (~left(num3::'a,u)) --> False" - oops + by meson (*2392 inferences so far. Searching to depth 12. 2.2 secs*) @@ -1355,7 +1355,7 @@ (\B A C. equal(add(A::'a,B),add(C::'a,B)) --> equal(A::'a,C)) & (mless(a::'a,a)) & (\A. ~equal(successor(A),num0)) --> False" - oops + by meson abbreviation "SET004_0_ax not_homomorphism2 not_homomorphism1 homomorphism compatible operation cantor diagonalise subset_relation @@ -2010,7 +2010,7 @@ (a_truth(says(a::'a,equal_type(b::'a,c)))) & (ask_1_if_2(c::'a,equal_type(a::'a,b))) & (\Answer. ~answer(Answer)) --> False" - oops + by meson (*621 inferences so far. Searching to depth 18. 0.2 secs*) @@ -2074,7 +2074,7 @@ (\Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & (\Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & (~product(a::'a,additive_identity,additive_identity)) --> False" - oops + by meson abbreviation "RNG_other_ax multiply add equal product additive_identity additive_inverse sum \ (\X. sum(X::'a,additive_inverse(X),additive_identity)) & @@ -2279,7 +2279,7 @@ (product(a::'a,b,additive_identity)) & (~equal(a::'a,additive_identity)) & (~equal(b::'a,additive_identity)) --> False" - oops + by meson (*101319 inferences so far. Searching to depth 14. 76.0 secs*) lemma ROB010_1: @@ -2292,7 +2292,7 @@ (\G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & (equal(negate(add(a::'a,negate(b))),c)) & (~equal(negate(add(c::'a,negate(add(b::'a,a)))),a)) --> False" - oops + by meson (*6933 inferences so far. Searching to depth 12. 5.1 secs*) @@ -2329,7 +2329,7 @@ (positive_integer(k)) & (\Vk X Y. equal(negate(add(negate(Y),negate(add(X::'a,negate(Y))))),X) & positive_integer(Vk) --> equal(negate(add(Y::'a,multiply(Vk::'a,add(X::'a,negate(add(X::'a,negate(Y))))))),negate(Y))) & (~equal(negate(add(e::'a,multiply(k::'a,add(d::'a,negate(add(d::'a,negate(e))))))),negate(e))) --> False" - oops + by meson (*14077 inferences so far. Searching to depth 11. 32.8 secs*) lemma ROB021_1: @@ -2342,7 +2342,7 @@ (\G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & (\X Y. equal(negate(X),negate(Y)) --> equal(X::'a,Y)) & (~equal(add(negate(add(a::'a,negate(b))),negate(add(negate(a),negate(b)))),b)) --> False" - oops + by meson (*35532 inferences so far. Searching to depth 19. 54.3 secs*) lemma SET005_1: @@ -2362,7 +2362,7 @@ (intersection(b::'a,c,bIc)) & (intersection(a::'a,bIc,aIbIc)) & (~intersection(aIb::'a,c,aIbIc)) --> False" - oops + by meson (*6450 inferences so far. Searching to depth 14. 4.2 secs*) @@ -2895,6 +2895,6 @@ (\X U Y. subset_collections(X::'a,Y) & element_of_collection(U::'a,X) --> element_of_collection(U::'a,Y)) & (subset_collections(g::'a,top_of_basis(f))) & (~element_of_collection(union_of_members(g),top_of_basis(f))) --> False" - oops + by meson end