# HG changeset patch # User wenzelm # Date 1434824249 -7200 # Node ID 5398aa5a4df9b58fb8349e13fefbf3ca516dbd6d # Parent 00db0d934a7dc25b7d5907bd1a5740b2d8ae30d4 eliminated list_all; diff -r 00db0d934a7d -r 5398aa5a4df9 src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Sat Jun 20 20:11:22 2015 +0200 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Sat Jun 20 20:17:29 2015 +0200 @@ -498,7 +498,7 @@ by simp qed -lemma (in idom_char_0) poly_zero: "poly p = poly [] \ list_all (\c. c = 0) p" +lemma (in idom_char_0) poly_zero: "poly p = poly [] \ (\c \ set p. c = 0)" apply (induct p) apply simp apply (rule iffI) @@ -506,7 +506,7 @@ apply auto done -lemma (in idom_char_0) poly_0: "list_all (\c. c = 0) p \ poly p x = 0" +lemma (in idom_char_0) poly_0: "\c \ set p. c = 0 \ poly p x = 0" unfolding poly_zero[symmetric] by simp @@ -873,7 +873,7 @@ text \The degree of a polynomial.\ -lemma (in semiring_0) lemma_degree_zero: "list_all (\c. c = 0) p \ pnormalize p = []" +lemma (in semiring_0) lemma_degree_zero: "(\c \ set p. c = 0) \ pnormalize p = []" by (induct p) auto lemma (in idom_char_0) degree_zero: @@ -916,7 +916,7 @@ by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps) then have "poly ((c # cs) +++ -- (d # ds)) = poly []" by (simp add: fun_eq_iff) - then have "c = d" and "list_all (\x. x = 0) ((cs +++ -- ds))" + then have "c = d" and "\x \ set (cs +++ -- ds). x = 0" unfolding poly_zero by (simp_all add: poly_minus_def algebra_simps) from this(2) have "poly (cs +++ -- ds) x = 0" for x unfolding poly_zero[symmetric] by simp diff -r 00db0d934a7d -r 5398aa5a4df9 src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy --- a/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Sat Jun 20 20:11:22 2015 +0200 +++ b/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Sat Jun 20 20:17:29 2015 +0200 @@ -1217,7 +1217,7 @@ then have "poly (polypoly' (?ts @ xs) p) = poly []" by auto then have "\c \ set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0" - using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff) + using poly_zero[where ?'a='a] by (simp add: polypoly'_def) with coefficients_head[of p, symmetric] have th0: "Ipoly (?ts @ xs) ?hd = 0" by simp