# HG changeset patch # User wenzelm # Date 1246389781 -7200 # Node ID 4a34d2a8a4970fb53563a11083e9a7aa6335ec03 # Parent 6129dea3d8a936b56ac7bcc08554d3db24191503# Parent 53acb8ec6c51e1a77ddc39c43574bea60cdb91b0 merged diff -r 53acb8ec6c51 -r 4a34d2a8a497 NEWS --- a/NEWS Tue Jun 30 21:19:32 2009 +0200 +++ b/NEWS Tue Jun 30 21:23:01 2009 +0200 @@ -73,8 +73,16 @@ approximation method. * "approximate" supports now arithmetic expressions as boundaries of intervals and implements -interval splitting. - +interval splitting and taylor series expansion. + +* Changed DERIV_intros to a NamedThmsFun. Each of the theorems in DERIV_intros +assumes composition with an additional function and matches a variable to the +derivative, which has to be solved by the simplifier. Hence +(auto intro!: DERIV_intros) computes the derivative of most elementary terms. + +* Maclauren.DERIV_tac and Maclauren.deriv_tac was removed, they are replaced by: +(auto intro!: DERIV_intros) +INCOMPATIBILITY. *** ML *** diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Decision_Procs/Approximation.thy Tue Jun 30 21:23:01 2009 +0200 @@ -2069,8 +2069,7 @@ | Atom nat | Num float -fun interpret_floatarith :: "floatarith \ real list \ real" -where +fun interpret_floatarith :: "floatarith \ real list \ real" where "interpret_floatarith (Add a b) vs = (interpret_floatarith a vs) + (interpret_floatarith b vs)" | "interpret_floatarith (Minus a) vs = - (interpret_floatarith a vs)" | "interpret_floatarith (Mult a b) vs = (interpret_floatarith a vs) * (interpret_floatarith b vs)" | @@ -2117,7 +2116,6 @@ and "interpret_floatarith (Num (Float 1 0)) vs = 1" and "interpret_floatarith (Num (Float (number_of a) 0)) vs = number_of a" by auto - subsection "Implement approximation function" fun lift_bin' :: "(float * float) option \ (float * float) option \ (float \ float \ float \ float \ (float * float)) \ (float * float) option" where @@ -2632,6 +2630,560 @@ shows "interpret_form f xs" using approx_form_aux[OF _ bounded_by_None] assms by auto +subsection {* Implementing Taylor series expansion *} + +fun isDERIV :: "nat \ floatarith \ real list \ bool" where +"isDERIV x (Add a b) vs = (isDERIV x a vs \ isDERIV x b vs)" | +"isDERIV x (Mult a b) vs = (isDERIV x a vs \ isDERIV x b vs)" | +"isDERIV x (Minus a) vs = isDERIV x a vs" | +"isDERIV x (Inverse a) vs = (isDERIV x a vs \ interpret_floatarith a vs \ 0)" | +"isDERIV x (Cos a) vs = isDERIV x a vs" | +"isDERIV x (Arctan a) vs = isDERIV x a vs" | +"isDERIV x (Min a b) vs = False" | +"isDERIV x (Max a b) vs = False" | +"isDERIV x (Abs a) vs = False" | +"isDERIV x Pi vs = True" | +"isDERIV x (Sqrt a) vs = (isDERIV x a vs \ interpret_floatarith a vs > 0)" | +"isDERIV x (Exp a) vs = isDERIV x a vs" | +"isDERIV x (Ln a) vs = (isDERIV x a vs \ interpret_floatarith a vs > 0)" | +"isDERIV x (Power a 0) vs = True" | +"isDERIV x (Power a (Suc n)) vs = isDERIV x a vs" | +"isDERIV x (Num f) vs = True" | +"isDERIV x (Atom n) vs = True" + +fun DERIV_floatarith :: "nat \ floatarith \ floatarith" where +"DERIV_floatarith x (Add a b) = Add (DERIV_floatarith x a) (DERIV_floatarith x b)" | +"DERIV_floatarith x (Mult a b) = Add (Mult a (DERIV_floatarith x b)) (Mult (DERIV_floatarith x a) b)" | +"DERIV_floatarith x (Minus a) = Minus (DERIV_floatarith x a)" | +"DERIV_floatarith x (Inverse a) = Minus (Mult (DERIV_floatarith x a) (Inverse (Power a 2)))" | +"DERIV_floatarith x (Cos a) = Minus (Mult (Cos (Add (Mult Pi (Num (Float 1 -1))) (Minus a))) (DERIV_floatarith x a))" | +"DERIV_floatarith x (Arctan a) = Mult (Inverse (Add (Num 1) (Power a 2))) (DERIV_floatarith x a)" | +"DERIV_floatarith x (Min a b) = Num 0" | +"DERIV_floatarith x (Max a b) = Num 0" | +"DERIV_floatarith x (Abs a) = Num 0" | +"DERIV_floatarith x Pi = Num 0" | +"DERIV_floatarith x (Sqrt a) = (Mult (Inverse (Mult (Sqrt a) (Num 2))) (DERIV_floatarith x a))" | +"DERIV_floatarith x (Exp a) = Mult (Exp a) (DERIV_floatarith x a)" | +"DERIV_floatarith x (Ln a) = Mult (Inverse a) (DERIV_floatarith x a)" | +"DERIV_floatarith x (Power a 0) = Num 0" | +"DERIV_floatarith x (Power a (Suc n)) = Mult (Num (Float (int (Suc n)) 0)) (Mult (Power a n) (DERIV_floatarith x a))" | +"DERIV_floatarith x (Num f) = Num 0" | +"DERIV_floatarith x (Atom n) = (if x = n then Num 1 else Num 0)" + +lemma DERIV_floatarith: + assumes "n < length vs" + assumes isDERIV: "isDERIV n f (vs[n := x])" + shows "DERIV (\ x'. interpret_floatarith f (vs[n := x'])) x :> + interpret_floatarith (DERIV_floatarith n f) (vs[n := x])" + (is "DERIV (?i f) x :> _") +using isDERIV proof (induct f arbitrary: x) + case (Inverse a) thus ?case + by (auto intro!: DERIV_intros + simp add: algebra_simps power2_eq_square) +next case (Cos a) thus ?case + by (auto intro!: DERIV_intros + simp del: interpret_floatarith.simps(5) + simp add: interpret_floatarith_sin interpret_floatarith.simps(5)[of a]) +next case (Power a n) thus ?case + by (cases n, auto intro!: DERIV_intros + simp del: power_Suc simp add: real_eq_of_nat) +next case (Ln a) thus ?case + by (auto intro!: DERIV_intros simp add: divide_inverse) +next case (Atom i) thus ?case using `n < length vs` by auto +qed (auto intro!: DERIV_intros) + +declare approx.simps[simp del] + +fun isDERIV_approx :: "nat \ nat \ floatarith \ (float * float) option list \ bool" where +"isDERIV_approx prec x (Add a b) vs = (isDERIV_approx prec x a vs \ isDERIV_approx prec x b vs)" | +"isDERIV_approx prec x (Mult a b) vs = (isDERIV_approx prec x a vs \ isDERIV_approx prec x b vs)" | +"isDERIV_approx prec x (Minus a) vs = isDERIV_approx prec x a vs" | +"isDERIV_approx prec x (Inverse a) vs = + (isDERIV_approx prec x a vs \ (case approx prec a vs of Some (l, u) \ 0 < l \ u < 0 | None \ False))" | +"isDERIV_approx prec x (Cos a) vs = isDERIV_approx prec x a vs" | +"isDERIV_approx prec x (Arctan a) vs = isDERIV_approx prec x a vs" | +"isDERIV_approx prec x (Min a b) vs = False" | +"isDERIV_approx prec x (Max a b) vs = False" | +"isDERIV_approx prec x (Abs a) vs = False" | +"isDERIV_approx prec x Pi vs = True" | +"isDERIV_approx prec x (Sqrt a) vs = + (isDERIV_approx prec x a vs \ (case approx prec a vs of Some (l, u) \ 0 < l | None \ False))" | +"isDERIV_approx prec x (Exp a) vs = isDERIV_approx prec x a vs" | +"isDERIV_approx prec x (Ln a) vs = + (isDERIV_approx prec x a vs \ (case approx prec a vs of Some (l, u) \ 0 < l | None \ False))" | +"isDERIV_approx prec x (Power a 0) vs = True" | +"isDERIV_approx prec x (Power a (Suc n)) vs = isDERIV_approx prec x a vs" | +"isDERIV_approx prec x (Num f) vs = True" | +"isDERIV_approx prec x (Atom n) vs = True" + +lemma isDERIV_approx: + assumes "bounded_by xs vs" + and isDERIV_approx: "isDERIV_approx prec x f vs" + shows "isDERIV x f xs" +using isDERIV_approx proof (induct f) + case (Inverse a) + then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" + and *: "0 < l \ u < 0" + by (cases "approx prec a vs", auto) + with approx[OF `bounded_by xs vs` approx_Some] + have "interpret_floatarith a xs \ 0" unfolding less_float_def by auto + thus ?case using Inverse by auto +next + case (Ln a) + then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" + and *: "0 < l" + by (cases "approx prec a vs", auto) + with approx[OF `bounded_by xs vs` approx_Some] + have "0 < interpret_floatarith a xs" unfolding less_float_def by auto + thus ?case using Ln by auto +next + case (Sqrt a) + then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" + and *: "0 < l" + by (cases "approx prec a vs", auto) + with approx[OF `bounded_by xs vs` approx_Some] + have "0 < interpret_floatarith a xs" unfolding less_float_def by auto + thus ?case using Sqrt by auto +next + case (Power a n) thus ?case by (cases n, auto) +qed auto + +lemma bounded_by_update_var: + assumes "bounded_by xs vs" and "vs ! i = Some (l, u)" + and bnd: "x \ { real l .. real u }" + shows "bounded_by (xs[i := x]) vs" +proof (cases "i < length xs") + case False thus ?thesis using `bounded_by xs vs` by auto +next + let ?xs = "xs[i := x]" + case True hence "i < length ?xs" by auto +{ fix j + assume "j < length vs" + have "case vs ! j of None \ True | Some (l, u) \ ?xs ! j \ { real l .. real u }" + proof (cases "vs ! j") + case (Some b) + thus ?thesis + proof (cases "i = j") + case True + thus ?thesis using `vs ! i = Some (l, u)` Some and bnd `i < length ?xs` + by auto + next + case False + thus ?thesis using `bounded_by xs vs`[THEN bounded_byE, OF `j < length vs`] Some + by auto + qed + qed auto } + thus ?thesis unfolding bounded_by_def by auto +qed + +lemma isDERIV_approx': + assumes "bounded_by xs vs" + and vs_x: "vs ! x = Some (l, u)" and X_in: "X \ { real l .. real u }" + and approx: "isDERIV_approx prec x f vs" + shows "isDERIV x f (xs[x := X])" +proof - + note bounded_by_update_var[OF `bounded_by xs vs` vs_x X_in] approx + thus ?thesis by (rule isDERIV_approx) +qed + +lemma DERIV_approx: + assumes "n < length xs" and bnd: "bounded_by xs vs" + and isD: "isDERIV_approx prec n f vs" + and app: "Some (l, u) = approx prec (DERIV_floatarith n f) vs" (is "_ = approx _ ?D _") + shows "\x. real l \ x \ x \ real u \ + DERIV (\ x. interpret_floatarith f (xs[n := x])) (xs!n) :> x" + (is "\ x. _ \ _ \ DERIV (?i f) _ :> _") +proof (rule exI[of _ "?i ?D (xs!n)"], rule conjI[OF _ conjI]) + let "?i f x" = "interpret_floatarith f (xs[n := x])" + from approx[OF bnd app] + show "real l \ ?i ?D (xs!n)" and "?i ?D (xs!n) \ real u" + using `n < length xs` by auto + from DERIV_floatarith[OF `n < length xs`, of f "xs!n"] isDERIV_approx[OF bnd isD] + show "DERIV (?i f) (xs!n) :> (?i ?D (xs!n))" by simp +qed + +fun lift_bin :: "(float * float) option \ (float * float) option \ (float \ float \ float \ float \ (float * float) option) \ (float * float) option" where +"lift_bin (Some (l1, u1)) (Some (l2, u2)) f = f l1 u1 l2 u2" | +"lift_bin a b f = None" + +lemma lift_bin: + assumes lift_bin_Some: "Some (l, u) = lift_bin a b f" + obtains l1 u1 l2 u2 + where "a = Some (l1, u1)" + and "b = Some (l2, u2)" + and "f l1 u1 l2 u2 = Some (l, u)" +using assms by (cases a, simp, cases b, simp, auto) + +fun approx_tse where +"approx_tse prec n 0 c k f bs = approx prec f bs" | +"approx_tse prec n (Suc s) c k f bs = + (if isDERIV_approx prec n f bs then + lift_bin (approx prec f (bs[n := Some (c,c)])) + (approx_tse prec n s c (Suc k) (DERIV_floatarith n f) bs) + (\ l1 u1 l2 u2. approx prec + (Add (Atom 0) + (Mult (Inverse (Num (Float (int k) 0))) + (Mult (Add (Atom (Suc (Suc 0))) (Minus (Num c))) + (Atom (Suc 0))))) [Some (l1, u1), Some (l2, u2), bs!n]) + else approx prec f bs)" + +lemma bounded_by_Cons: + assumes bnd: "bounded_by xs vs" + and x: "x \ { real l .. real u }" + shows "bounded_by (x#xs) ((Some (l, u))#vs)" +proof - + { fix i assume *: "i < length ((Some (l, u))#vs)" + have "case ((Some (l,u))#vs) ! i of Some (l, u) \ (x#xs)!i \ { real l .. real u } | None \ True" + proof (cases i) + case 0 with x show ?thesis by auto + next + case (Suc i) with * have "i < length vs" by auto + from bnd[THEN bounded_byE, OF this] + show ?thesis unfolding Suc nth_Cons_Suc . + qed } + thus ?thesis by (auto simp add: bounded_by_def) +qed + +lemma approx_tse_generic: + assumes "bounded_by xs vs" + and bnd_c: "bounded_by (xs[x := real c]) vs" and "x < length vs" and "x < length xs" + and bnd_x: "vs ! x = Some (lx, ux)" + and ate: "Some (l, u) = approx_tse prec x s c k f vs" + shows "\ n. (\ m < n. \ z \ {real lx .. real ux}. + DERIV (\ y. interpret_floatarith ((DERIV_floatarith x ^^ m) f) (xs[x := y])) z :> + (interpret_floatarith ((DERIV_floatarith x ^^ (Suc m)) f) (xs[x := z]))) + \ (\ t \ {real lx .. real ux}. (\ i = 0.. j \ {k.. j \ {k.. {real l .. real u})" (is "\ n. ?taylor f k l u n") +using ate proof (induct s arbitrary: k f l u) + case 0 + { fix t assume "t \ {real lx .. real ux}" + note bounded_by_update_var[OF `bounded_by xs vs` bnd_x this] + from approx[OF this 0[unfolded approx_tse.simps]] + have "(interpret_floatarith f (xs[x := t])) \ {real l .. real u}" + by (auto simp add: algebra_simps) + } thus ?case by (auto intro!: exI[of _ 0]) +next + case (Suc s) + show ?case + proof (cases "isDERIV_approx prec x f vs") + case False + note ap = Suc.prems[unfolded approx_tse.simps if_not_P[OF False]] + + { fix t assume "t \ {real lx .. real ux}" + note bounded_by_update_var[OF `bounded_by xs vs` bnd_x this] + from approx[OF this ap] + have "(interpret_floatarith f (xs[x := t])) \ {real l .. real u}" + by (auto simp add: algebra_simps) + } thus ?thesis by (auto intro!: exI[of _ 0]) + next + case True + with Suc.prems + obtain l1 u1 l2 u2 + where a: "Some (l1, u1) = approx prec f (vs[x := Some (c,c)])" + and ate: "Some (l2, u2) = approx_tse prec x s c (Suc k) (DERIV_floatarith x f) vs" + and final: "Some (l, u) = approx prec + (Add (Atom 0) + (Mult (Inverse (Num (Float (int k) 0))) + (Mult (Add (Atom (Suc (Suc 0))) (Minus (Num c))) + (Atom (Suc 0))))) [Some (l1, u1), Some (l2, u2), vs!x]" + by (auto elim!: lift_bin) blast + + from bnd_c `x < length xs` + have bnd: "bounded_by (xs[x:=real c]) (vs[x:= Some (c,c)])" + by (auto intro!: bounded_by_update) + + from approx[OF this a] + have f_c: "interpret_floatarith ((DERIV_floatarith x ^^ 0) f) (xs[x := real c]) \ { real l1 .. real u1 }" + (is "?f 0 (real c) \ _") + by auto + + { fix f :: "'a \ 'a" fix n :: nat fix x :: 'a + have "(f ^^ Suc n) x = (f ^^ n) (f x)" + by (induct n, auto) } + note funpow_Suc = this[symmetric] + from Suc.hyps[OF ate, unfolded this] + obtain n + where DERIV_hyp: "\ m z. \ m < n ; z \ { real lx .. real ux } \ \ DERIV (?f (Suc m)) z :> ?f (Suc (Suc m)) z" + and hyp: "\ t \ {real lx .. real ux}. (\ i = 0.. j \ {Suc k.. j \ {Suc k.. {real l2 .. real u2}" + (is "\ t \ _. ?X (Suc k) f n t \ _") + by blast + + { fix m z + assume "m < Suc n" and bnd_z: "z \ { real lx .. real ux }" + have "DERIV (?f m) z :> ?f (Suc m) z" + proof (cases m) + case 0 + with DERIV_floatarith[OF `x < length xs` isDERIV_approx'[OF `bounded_by xs vs` bnd_x bnd_z True]] + show ?thesis by simp + next + case (Suc m') + hence "m' < n" using `m < Suc n` by auto + from DERIV_hyp[OF this bnd_z] + show ?thesis using Suc by simp + qed } note DERIV = this + + have "\ k i. k < i \ {k ..< i} = insert k {Suc k ..< i}" by auto + hence setprod_head_Suc: "\ k i. \ {k ..< k + Suc i} = k * \ {Suc k ..< Suc k + i}" by auto + have setsum_move0: "\ k F. setsum F {0.. k. F (Suc k)) {0.. "xs!x - real c" + + { fix t assume t: "t \ {real lx .. real ux}" + hence "bounded_by [xs!x] [vs!x]" + using `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] + by (cases "vs!x", auto simp add: bounded_by_def) + + with hyp[THEN bspec, OF t] f_c + have "bounded_by [?f 0 (real c), ?X (Suc k) f n t, xs!x] [Some (l1, u1), Some (l2, u2), vs!x]" + by (auto intro!: bounded_by_Cons) + from approx[OF this final, unfolded atLeastAtMost_iff[symmetric]] + have "?X (Suc k) f n t * (xs!x - real c) * inverse (real k) + ?f 0 (real c) \ {real l .. real u}" + by (auto simp add: algebra_simps) + also have "?X (Suc k) f n t * (xs!x - real c) * inverse (real k) + ?f 0 (real c) = + (\ i = 0.. j \ {k.. j \ {k.. {real l .. real u}" . } + thus ?thesis using DERIV by blast + qed +qed + +lemma setprod_fact: "\ {1..<1 + k} = fact (k :: nat)" +proof (induct k) + case (Suc k) + have "{ 1 ..< Suc (Suc k) } = insert (Suc k) { 1 ..< Suc k }" by auto + hence "\ { 1 ..< Suc (Suc k) } = (Suc k) * \ { 1 ..< Suc k }" by auto + thus ?case using Suc by auto +qed simp + +lemma approx_tse: + assumes "bounded_by xs vs" + and bnd_x: "vs ! x = Some (lx, ux)" and bnd_c: "real c \ {real lx .. real ux}" + and "x < length vs" and "x < length xs" + and ate: "Some (l, u) = approx_tse prec x s c 1 f vs" + shows "interpret_floatarith f xs \ { real l .. real u }" +proof - + def F \ "\ n z. interpret_floatarith ((DERIV_floatarith x ^^ n) f) (xs[x := z])" + hence F0: "F 0 = (\ z. interpret_floatarith f (xs[x := z]))" by auto + + hence "bounded_by (xs[x := real c]) vs" and "x < length vs" "x < length xs" + using `bounded_by xs vs` bnd_x bnd_c `x < length vs` `x < length xs` + by (auto intro!: bounded_by_update_var) + + from approx_tse_generic[OF `bounded_by xs vs` this bnd_x ate] + obtain n + where DERIV: "\ m z. m < n \ real lx \ z \ z \ real ux \ DERIV (F m) z :> F (Suc m) z" + and hyp: "\ t. t \ {real lx .. real ux} \ + (\ j = 0.. {real l .. real u}" (is "\ t. _ \ ?taylor t \ _") + unfolding F_def atLeastAtMost_iff[symmetric] setprod_fact by blast + + have bnd_xs: "xs ! x \ { real lx .. real ux }" + using `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] bnd_x by auto + + show ?thesis + proof (cases n) + case 0 thus ?thesis using hyp[OF bnd_xs] unfolding F_def by auto + next + case (Suc n') + show ?thesis + proof (cases "xs ! x = real c") + case True + from True[symmetric] hyp[OF bnd_xs] Suc show ?thesis + unfolding F_def Suc setsum_head_upt_Suc[OF zero_less_Suc] setsum_shift_bounds_Suc_ivl by auto + next + case False + + have "real lx \ real c" "real c \ real ux" "real lx \ xs!x" "xs!x \ real ux" + using Suc bnd_c `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] bnd_x by auto + from Taylor.taylor[OF zero_less_Suc, of F, OF F0 DERIV[unfolded Suc] this False] + obtain t where t_bnd: "if xs ! x < real c then xs ! x < t \ t < real c else real c < t \ t < xs ! x" + and fl_eq: "interpret_floatarith f (xs[x := xs ! x]) = + (\m = 0.. {real lx .. real ux}" + by (cases "xs ! x < real c", auto) + + have "interpret_floatarith f (xs[x := xs ! x]) = ?taylor t" + unfolding fl_eq Suc by (auto simp add: algebra_simps divide_inverse) + also have "\ \ {real l .. real u}" using * by (rule hyp) + finally show ?thesis by simp + qed + qed +qed + +fun approx_tse_form' where +"approx_tse_form' prec t f 0 l u cmp = + (case approx_tse prec 0 t ((l + u) * Float 1 -1) 1 f [Some (l, u)] + of Some (l, u) \ cmp l u | None \ False)" | +"approx_tse_form' prec t f (Suc s) l u cmp = + (let m = (l + u) * Float 1 -1 + in approx_tse_form' prec t f s l m cmp \ + approx_tse_form' prec t f s m u cmp)" + +lemma approx_tse_form': + assumes "approx_tse_form' prec t f s l u cmp" and "x \ {real l .. real u}" + shows "\ l' u' ly uy. x \ { real l' .. real u' } \ real l \ real l' \ real u' \ real u \ cmp ly uy \ + approx_tse prec 0 t ((l' + u') * Float 1 -1) 1 f [Some (l', u')] = Some (ly, uy)" +using assms proof (induct s arbitrary: l u) + case 0 + then obtain ly uy + where *: "approx_tse prec 0 t ((l + u) * Float 1 -1) 1 f [Some (l, u)] = Some (ly, uy)" + and **: "cmp ly uy" by (auto elim!: option_caseE) + with 0 show ?case by (auto intro!: exI) +next + case (Suc s) + let ?m = "(l + u) * Float 1 -1" + from Suc.prems + have l: "approx_tse_form' prec t f s l ?m cmp" + and u: "approx_tse_form' prec t f s ?m u cmp" + by (auto simp add: Let_def) + + have m_l: "real l \ real ?m" and m_u: "real ?m \ real u" + unfolding le_float_def using Suc.prems by auto + + with `x \ { real l .. real u }` + have "x \ { real l .. real ?m} \ x \ { real ?m .. real u }" by auto + thus ?case + proof (rule disjE) + assume "x \ { real l .. real ?m}" + from Suc.hyps[OF l this] + obtain l' u' ly uy + where "x \ { real l' .. real u' } \ real l \ real l' \ real u' \ real ?m \ cmp ly uy \ + approx_tse prec 0 t ((l' + u') * Float 1 -1) 1 f [Some (l', u')] = Some (ly, uy)" by blast + with m_u show ?thesis by (auto intro!: exI) + next + assume "x \ { real ?m .. real u }" + from Suc.hyps[OF u this] + obtain l' u' ly uy + where "x \ { real l' .. real u' } \ real ?m \ real l' \ real u' \ real u \ cmp ly uy \ + approx_tse prec 0 t ((l' + u') * Float 1 -1) 1 f [Some (l', u')] = Some (ly, uy)" by blast + with m_u show ?thesis by (auto intro!: exI) + qed +qed + +lemma approx_tse_form'_less: + assumes tse: "approx_tse_form' prec t (Add a (Minus b)) s l u (\ l u. 0 < l)" + and x: "x \ {real l .. real u}" + shows "interpret_floatarith b [x] < interpret_floatarith a [x]" +proof - + from approx_tse_form'[OF tse x] + obtain l' u' ly uy + where x': "x \ { real l' .. real u' }" and "real l \ real l'" + and "real u' \ real u" and "0 < ly" + and tse: "approx_tse prec 0 t ((l' + u') * Float 1 -1) 1 (Add a (Minus b)) [Some (l', u')] = Some (ly, uy)" + by blast + + hence "bounded_by [x] [Some (l', u')]" by (auto simp add: bounded_by_def) + + from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x' + have "real ly \ interpret_floatarith a [x] - interpret_floatarith b [x]" + by (auto simp add: diff_minus) + from order_less_le_trans[OF `0 < ly`[unfolded less_float_def] this] + show ?thesis by auto +qed + +lemma approx_tse_form'_le: + assumes tse: "approx_tse_form' prec t (Add a (Minus b)) s l u (\ l u. 0 \ l)" + and x: "x \ {real l .. real u}" + shows "interpret_floatarith b [x] \ interpret_floatarith a [x]" +proof - + from approx_tse_form'[OF tse x] + obtain l' u' ly uy + where x': "x \ { real l' .. real u' }" and "real l \ real l'" + and "real u' \ real u" and "0 \ ly" + and tse: "approx_tse prec 0 t ((l' + u') * Float 1 -1) 1 (Add a (Minus b)) [Some (l', u')] = Some (ly, uy)" + by blast + + hence "bounded_by [x] [Some (l', u')]" by (auto simp add: bounded_by_def) + + from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x' + have "real ly \ interpret_floatarith a [x] - interpret_floatarith b [x]" + by (auto simp add: diff_minus) + from order_trans[OF `0 \ ly`[unfolded le_float_def] this] + show ?thesis by auto +qed + +definition +"approx_tse_form prec t s f = + (case f + of (Bound x a b f) \ x = Atom 0 \ + (case (approx prec a [None], approx prec b [None]) + of (Some (l, u), Some (l', u')) \ + (case f + of Less lf rt \ approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\ l u. 0 < l) + | LessEqual lf rt \ approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\ l u. 0 \ l) + | AtLeastAtMost x lf rt \ + approx_tse_form' prec t (Add x (Minus lf)) s l u' (\ l u. 0 \ l) \ + approx_tse_form' prec t (Add rt (Minus x)) s l u' (\ l u. 0 \ l) + | _ \ False) + | _ \ False) + | _ \ False)" + +lemma approx_tse_form: + assumes "approx_tse_form prec t s f" + shows "interpret_form f [x]" +proof (cases f) + case (Bound i a b f') note f_def = this + with assms obtain l u l' u' + where a: "approx prec a [None] = Some (l, u)" + and b: "approx prec b [None] = Some (l', u')" + unfolding approx_tse_form_def by (auto elim!: option_caseE) + + from Bound assms have "i = Atom 0" unfolding approx_tse_form_def by auto + hence i: "interpret_floatarith i [x] = x" by auto + + { let "?f z" = "interpret_floatarith z [x]" + assume "?f i \ { ?f a .. ?f b }" + with approx[OF _ a[symmetric], of "[x]"] approx[OF _ b[symmetric], of "[x]"] + have bnd: "x \ { real l .. real u'}" unfolding bounded_by_def i by auto + + have "interpret_form f' [x]" + proof (cases f') + case (Less lf rt) + with Bound a b assms + have "approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\ l u. 0 < l)" + unfolding approx_tse_form_def by auto + from approx_tse_form'_less[OF this bnd] + show ?thesis using Less by auto + next + case (LessEqual lf rt) + with Bound a b assms + have "approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\ l u. 0 \ l)" + unfolding approx_tse_form_def by auto + from approx_tse_form'_le[OF this bnd] + show ?thesis using LessEqual by auto + next + case (AtLeastAtMost x lf rt) + with Bound a b assms + have "approx_tse_form' prec t (Add rt (Minus x)) s l u' (\ l u. 0 \ l)" + and "approx_tse_form' prec t (Add x (Minus lf)) s l u' (\ l u. 0 \ l)" + unfolding approx_tse_form_def by auto + from approx_tse_form'_le[OF this(1) bnd] approx_tse_form'_le[OF this(2) bnd] + show ?thesis using AtLeastAtMost by auto + next + case (Bound x a b f') with assms + show ?thesis by (auto elim!: option_caseE simp add: f_def approx_tse_form_def) + next + case (Assign x a f') with assms + show ?thesis by (auto elim!: option_caseE simp add: f_def approx_tse_form_def) + qed } thus ?thesis unfolding f_def by auto +next case Assign with assms show ?thesis by (auto simp add: approx_tse_form_def) +next case LessEqual with assms show ?thesis by (auto simp add: approx_tse_form_def) +next case Less with assms show ?thesis by (auto simp add: approx_tse_form_def) +next case AtLeastAtMost with assms show ?thesis by (auto simp add: approx_tse_form_def) +qed + subsection {* Implement proof method \texttt{approximation} *} lemmas interpret_form_equations = interpret_form.simps interpret_floatarith.simps interpret_floatarith_num @@ -2648,6 +3200,7 @@ @{code_datatype form = Bound | Assign | Less | LessEqual | AtLeastAtMost} val approx_form = @{code approx_form} +val approx_tse_form = @{code approx_tse_form} val approx' = @{code approx'} end @@ -2675,6 +3228,7 @@ "Float'_Arith.AtLeastAtMost/ (_,/ _,/ _)") code_const approx_form (Eval "Float'_Arith.approx'_form") +code_const approx_tse_form (Eval "Float'_Arith.approx'_tse'_form") code_const approx' (Eval "Float'_Arith.approx'") ML {* @@ -2712,30 +3266,49 @@ val form_equations = PureThy.get_thms @{theory} "interpret_form_equations"; - fun rewrite_interpret_form_tac ctxt prec splitting i st = let + fun rewrite_interpret_form_tac ctxt prec splitting taylor i st = let + fun lookup_splitting (Free (name, typ)) + = case AList.lookup (op =) splitting name + of SOME s => HOLogic.mk_number @{typ nat} s + | NONE => @{term "0 :: nat"} val vs = nth (prems_of st) (i - 1) |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop |> Term.strip_comb |> snd |> List.last |> HOLogic.dest_list - val n = vs |> length - |> HOLogic.mk_number @{typ nat} - |> Thm.cterm_of (ProofContext.theory_of ctxt) val p = prec |> HOLogic.mk_number @{typ nat} |> Thm.cterm_of (ProofContext.theory_of ctxt) - val s = vs - |> map (fn Free (name, typ) => - case AList.lookup (op =) splitting name of - SOME s => HOLogic.mk_number @{typ nat} s - | NONE => @{term "0 :: nat"}) - |> HOLogic.mk_list @{typ nat} + in case taylor + of NONE => let + val n = vs |> length + |> HOLogic.mk_number @{typ nat} + |> Thm.cterm_of (ProofContext.theory_of ctxt) + val s = vs + |> map lookup_splitting + |> HOLogic.mk_list @{typ nat} + |> Thm.cterm_of (ProofContext.theory_of ctxt) + in + (rtac (Thm.instantiate ([], [(@{cpat "?n::nat"}, n), + (@{cpat "?prec::nat"}, p), + (@{cpat "?ss::nat list"}, s)]) + @{thm "approx_form"}) i + THEN simp_tac @{simpset} i) st + end + + | SOME t => if length vs <> 1 then raise (TERM ("More than one variable used for taylor series expansion", [prop_of st])) + else let + val t = t + |> HOLogic.mk_number @{typ nat} |> Thm.cterm_of (ProofContext.theory_of ctxt) - in - rtac (Thm.instantiate ([], [(@{cpat "?n::nat"}, n), - (@{cpat "?prec::nat"}, p), - (@{cpat "?ss::nat list"}, s)]) - @{thm "approx_form"}) i st + val s = vs |> map lookup_splitting |> hd + |> Thm.cterm_of (ProofContext.theory_of ctxt) + in + rtac (Thm.instantiate ([], [(@{cpat "?s::nat"}, s), + (@{cpat "?t::nat"}, t), + (@{cpat "?prec::nat"}, p)]) + @{thm "approx_tse_form"}) i st + end end (* copied from Tools/induct.ML should probably in args.ML *) @@ -2751,11 +3324,15 @@ by auto method_setup approximation = {* - Scan.lift (OuterParse.nat) -- + Scan.lift (OuterParse.nat) + -- Scan.optional (Scan.lift (Args.$$$ "splitting" |-- Args.colon) |-- OuterParse.and_list' (free --| Scan.lift (Args.$$$ "=") -- Scan.lift OuterParse.nat)) [] + -- + Scan.option (Scan.lift (Args.$$$ "taylor" |-- Args.colon) + |-- (free |-- Scan.lift (Args.$$$ "=") |-- Scan.lift OuterParse.nat)) >> - (fn (prec, splitting) => fn ctxt => + (fn ((prec, splitting), taylor) => fn ctxt => SIMPLE_METHOD' (fn i => REPEAT (FIRST' [etac @{thm intervalE}, etac @{thm meta_eqE}, @@ -2763,15 +3340,10 @@ THEN METAHYPS (reorder_bounds_tac i) i THEN TRY (filter_prems_tac (K false) i) THEN DETERM (Reflection.genreify_tac ctxt form_equations NONE i) - THEN print_tac "approximation" - THEN rewrite_interpret_form_tac ctxt prec splitting i - THEN simp_tac @{simpset} i + THEN rewrite_interpret_form_tac ctxt prec splitting taylor i THEN gen_eval_tac eval_oracle ctxt i)) *} "real number approximation" -lemma "\ \ {0..1 :: real} \ \ < \ + 0.7" - by (approximation 10 splitting: "\" = 1) - ML {* fun dest_interpret (@{const "interpret_floatarith"} $ b $ xs) = (b, xs) | dest_interpret t = raise TERM ("dest_interpret", [t]) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Decision_Procs/ex/Approximation_Ex.thy --- a/src/HOL/Decision_Procs/ex/Approximation_Ex.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Decision_Procs/ex/Approximation_Ex.thy Tue Jun 30 21:23:01 2009 +0200 @@ -8,13 +8,28 @@ Here are some examples how to use the approximation method. -The parameter passed to the method specifies the precision used by the computations, it is specified -as number of bits to calculate. When a variable is used it needs to be bounded by an interval. This -interval is specified as a conjunction of the lower and upper bound. It must have the form -@{text "\ l\<^isub>1 \ x\<^isub>1 \ x\<^isub>1 \ u\<^isub>1 ; \ ; l\<^isub>n \ x\<^isub>n \ x\<^isub>n \ u\<^isub>n \ \ F"} where @{term F} is the formula, and -@{text "x\<^isub>1, \, x\<^isub>n"} are the variables. The lower bounds @{text "l\<^isub>1, \, l\<^isub>n"} and the upper bounds -@{text "u\<^isub>1, \, u\<^isub>n"} must either be integer numerals, floating point numbers or of the form -@{term "m * pow2 e"} to specify a exact floating point value. +The approximation method has the following syntax: + +approximate "prec" (splitting: "x" = "depth" and "y" = "depth" ...)? (taylor: "z" = "derivates")? + +Here "prec" specifies the precision used in all computations, it is specified as +number of bits to calculate. In the proposition to prove an arbitrary amount of +variables can be used, but each one need to be bounded by an upper and lower +bound. + +To specify the bounds either @{term "l\<^isub>1 \ x \ x \ u\<^isub>1"}, +@{term "x \ { l\<^isub>1 .. u\<^isub>1 }"} or @{term "x = bnd"} can be used. Where the +bound specification are again arithmetic formulas containing variables. They can +be connected using either meta level or HOL equivalence. + +To use interval splitting add for each variable whos interval should be splitted +to the "splitting:" parameter. The parameter specifies how often each interval +should be divided, e.g. when x = 16 is specified, there will be @{term "65536 = 2^16"} +intervals to be calculated. + +To use taylor series expansion specify the variable to derive. You need to +specify the amount of derivations to compute. When using taylor series expansion +only one variable can be used. *} @@ -57,4 +72,7 @@ shows "g / v * tan (35 * d) \ { 3 * d .. 3.1 * d }" using assms by (approximation 80) +lemma "\ \ { 0 .. 1 :: real } \ \ ^ 2 \ \" + by (approximation 30 splitting: \=1 taylor: \ = 3) + end diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Deriv.thy Tue Jun 30 21:23:01 2009 +0200 @@ -115,12 +115,16 @@ text{*Differentiation of finite sum*} +lemma DERIV_setsum: + assumes "finite S" + and "\ n. n \ S \ DERIV (%x. f x n) x :> (f' x n)" + shows "DERIV (%x. setsum (f x) S) x :> setsum (f' x) S" + using assms by induct (auto intro!: DERIV_add) + lemma DERIV_sumr [rule_format (no_asm)]: "(\r. m \ r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x)) --> DERIV (%x. \n=m.. (\r=m..x. f x ^ n) x :> of_nat n * (D * f x ^ (n - Suc 0))" by (cases "n", simp, simp add: DERIV_power_Suc f del: power_Suc) - text {* Caratheodory formulation of derivative at a point *} lemma CARAT_DERIV: @@ -308,6 +311,30 @@ lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" by auto +text {* DERIV_intros *} + +ML{* +structure DerivIntros = + NamedThmsFun(val name = "DERIV_intros" + val description = "DERIV introduction rules"); +*} +setup DerivIntros.setup + +lemma DERIV_cong: "\ DERIV f x :> X ; X = Y \ \ DERIV f x :> Y" + by simp + +declare + DERIV_const[THEN DERIV_cong, DERIV_intros] + DERIV_ident[THEN DERIV_cong, DERIV_intros] + DERIV_add[THEN DERIV_cong, DERIV_intros] + DERIV_minus[THEN DERIV_cong, DERIV_intros] + DERIV_mult[THEN DERIV_cong, DERIV_intros] + DERIV_diff[THEN DERIV_cong, DERIV_intros] + DERIV_inverse'[THEN DERIV_cong, DERIV_intros] + DERIV_divide[THEN DERIV_cong, DERIV_intros] + DERIV_power[where 'a=real, THEN DERIV_cong, + unfolded real_of_nat_def[symmetric], DERIV_intros] + DERIV_setsum[THEN DERIV_cong, DERIV_intros] subsection {* Differentiability predicate *} diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Imperative_HOL/Array.thy --- a/src/HOL/Imperative_HOL/Array.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Imperative_HOL/Array.thy Tue Jun 30 21:23:01 2009 +0200 @@ -1,5 +1,4 @@ -(* Title: HOL/Library/Array.thy - ID: $Id$ +(* Title: HOL/Imperative_HOL/Array.thy Author: John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen *) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Imperative_HOL/Heap_Monad.thy --- a/src/HOL/Imperative_HOL/Heap_Monad.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Imperative_HOL/Heap_Monad.thy Tue Jun 30 21:23:01 2009 +0200 @@ -306,67 +306,75 @@ code_const "Heap_Monad.Fail" (OCaml "Failure") code_const "Heap_Monad.raise_exc" (OCaml "!(fun/ ()/ ->/ raise/ _)") -setup {* let - open Code_Thingol; +setup {* + +let - fun lookup naming = the o Code_Thingol.lookup_const naming; +open Code_Thingol; + +fun imp_program naming = - fun imp_monad_bind'' bind' return' unit' ts = - let - val dummy_name = ""; - val dummy_type = ITyVar dummy_name; - val dummy_case_term = IVar dummy_name; - (*assumption: dummy values are not relevant for serialization*) - val unitt = IConst (unit', (([], []), [])); - fun dest_abs ((v, ty) `|=> t, _) = ((v, ty), t) - | dest_abs (t, ty) = - let - val vs = Code_Thingol.fold_varnames cons t []; - val v = Name.variant vs "x"; - val ty' = (hd o fst o Code_Thingol.unfold_fun) ty; - in ((v, ty'), t `$ IVar v) end; - fun force (t as IConst (c, _) `$ t') = if c = return' - then t' else t `$ unitt - | force t = t `$ unitt; - fun tr_bind' [(t1, _), (t2, ty2)] = - let - val ((v, ty), t) = dest_abs (t2, ty2); - in ICase (((force t1, ty), [(IVar v, tr_bind'' t)]), dummy_case_term) end - and tr_bind'' t = case Code_Thingol.unfold_app t - of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind' - then tr_bind' [(x1, ty1), (x2, ty2)] - else force t - | _ => force t; - in (dummy_name, dummy_type) `|=> ICase (((IVar dummy_name, dummy_type), - [(unitt, tr_bind' ts)]), dummy_case_term) end - and imp_monad_bind' bind' return' unit' (const as (c, (_, tys))) ts = if c = bind' then case (ts, tys) - of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)] - | ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)] `$ t3 - | (ts, _) => imp_monad_bind bind' return' unit' (eta_expand 2 (const, ts)) - else IConst const `$$ map (imp_monad_bind bind' return' unit') ts - and imp_monad_bind bind' return' unit' (IConst const) = imp_monad_bind' bind' return' unit' const [] - | imp_monad_bind bind' return' unit' (t as IVar _) = t - | imp_monad_bind bind' return' unit' (t as _ `$ _) = (case unfold_app t - of (IConst const, ts) => imp_monad_bind' bind' return' unit' const ts - | (t, ts) => imp_monad_bind bind' return' unit' t `$$ map (imp_monad_bind bind' return' unit') ts) - | imp_monad_bind bind' return' unit' (v_ty `|=> t) = v_ty `|=> imp_monad_bind bind' return' unit' t - | imp_monad_bind bind' return' unit' (ICase (((t, ty), pats), t0)) = ICase - (((imp_monad_bind bind' return' unit' t, ty), (map o pairself) (imp_monad_bind bind' return' unit') pats), imp_monad_bind bind' return' unit' t0); + let + fun is_const c = case lookup_const naming c + of SOME c' => (fn c'' => c' = c'') + | NONE => K false; + val is_bindM = is_const @{const_name bindM}; + val is_return = is_const @{const_name return}; + val dummy_name = "X"; + val dummy_type = ITyVar dummy_name; + val dummy_case_term = IVar ""; + (*assumption: dummy values are not relevant for serialization*) + val unitt = case lookup_const naming @{const_name Unity} + of SOME unit' => IConst (unit', (([], []), [])) + | NONE => error ("Must include " ^ @{const_name Unity} ^ " in generated constants."); + fun dest_abs ((v, ty) `|=> t, _) = ((v, ty), t) + | dest_abs (t, ty) = + let + val vs = fold_varnames cons t []; + val v = Name.variant vs "x"; + val ty' = (hd o fst o unfold_fun) ty; + in ((v, ty'), t `$ IVar v) end; + fun force (t as IConst (c, _) `$ t') = if is_return c + then t' else t `$ unitt + | force t = t `$ unitt; + fun tr_bind' [(t1, _), (t2, ty2)] = + let + val ((v, ty), t) = dest_abs (t2, ty2); + in ICase (((force t1, ty), [(IVar v, tr_bind'' t)]), dummy_case_term) end + and tr_bind'' t = case unfold_app t + of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if is_bindM c + then tr_bind' [(x1, ty1), (x2, ty2)] + else force t + | _ => force t; + fun imp_monad_bind'' ts = (dummy_name, dummy_type) `|=> ICase (((IVar dummy_name, dummy_type), + [(unitt, tr_bind' ts)]), dummy_case_term) + and imp_monad_bind' (const as (c, (_, tys))) ts = if is_bindM c then case (ts, tys) + of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)] + | ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' [(t1, ty1), (t2, ty2)] `$ t3 + | (ts, _) => imp_monad_bind (eta_expand 2 (const, ts)) + else IConst const `$$ map imp_monad_bind ts + and imp_monad_bind (IConst const) = imp_monad_bind' const [] + | imp_monad_bind (t as IVar _) = t + | imp_monad_bind (t as _ `$ _) = (case unfold_app t + of (IConst const, ts) => imp_monad_bind' const ts + | (t, ts) => imp_monad_bind t `$$ map imp_monad_bind ts) + | imp_monad_bind (v_ty `|=> t) = v_ty `|=> imp_monad_bind t + | imp_monad_bind (ICase (((t, ty), pats), t0)) = ICase + (((imp_monad_bind t, ty), + (map o pairself) imp_monad_bind pats), + imp_monad_bind t0); - fun imp_program naming = (Graph.map_nodes o map_terms_stmt) - (imp_monad_bind (lookup naming @{const_name bindM}) - (lookup naming @{const_name return}) - (lookup naming @{const_name Unity})); + in (Graph.map_nodes o map_terms_stmt) imp_monad_bind end; in - Code_Target.extend_target ("SML_imp", ("SML", imp_program)) - #> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program)) +Code_Target.extend_target ("SML_imp", ("SML", imp_program)) +#> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program)) end + *} - code_reserved OCaml Failure raise diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Imperative_HOL/Imperative_HOL_ex.thy --- a/src/HOL/Imperative_HOL/Imperative_HOL_ex.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Imperative_HOL/Imperative_HOL_ex.thy Tue Jun 30 21:23:01 2009 +0200 @@ -1,8 +1,9 @@ (* Title: HOL/Imperative_HOL/Imperative_HOL_ex.thy - Author: John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen + Author: John Matthews, Galois Connections; + Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen *) -header {* Mmonadic imperative HOL with examples *} +header {* Monadic imperative HOL with examples *} theory Imperative_HOL_ex imports Imperative_HOL "ex/Imperative_Quicksort" diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Imperative_HOL/ex/Imperative_Quicksort.thy --- a/src/HOL/Imperative_HOL/ex/Imperative_Quicksort.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Imperative_HOL/ex/Imperative_Quicksort.thy Tue Jun 30 21:23:01 2009 +0200 @@ -631,9 +631,9 @@ ML {* @{code qsort} (Array.fromList [42, 2, 3, 5, 0, 1705, 8, 3, 15]) () *} -export_code qsort in SML_imp module_name QSort +(*export_code qsort in SML_imp module_name QSort*) export_code qsort in OCaml module_name QSort file - -export_code qsort in OCaml_imp module_name QSort file - +(*export_code qsort in OCaml_imp module_name QSort file -*) export_code qsort in Haskell module_name QSort file - end \ No newline at end of file diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Library/Float.thy Tue Jun 30 21:23:01 2009 +0200 @@ -59,6 +59,12 @@ "real (Float -1 0) = -1" and "real (Float (number_of n) 0) = number_of n" by auto +lemma float_number_of[simp]: "real (number_of x :: float) = number_of x" + by (simp only:number_of_float_def Float_num[unfolded number_of_is_id]) + +lemma float_number_of_int[simp]: "real (Float n 0) = real n" + by (simp add: Float_num[unfolded number_of_is_id] real_of_float_simp pow2_def) + lemma pow2_0[simp]: "pow2 0 = 1" by simp lemma pow2_1[simp]: "pow2 1 = 2" by simp lemma pow2_neg: "pow2 x = inverse (pow2 (-x))" by simp diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Library/Poly_Deriv.thy --- a/src/HOL/Library/Poly_Deriv.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Library/Poly_Deriv.thy Tue Jun 30 21:23:01 2009 +0200 @@ -85,13 +85,7 @@ by (rule lemma_DERIV_subst, rule DERIV_add, auto) lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x" -apply (induct p) -apply simp -apply (simp add: pderiv_pCons) -apply (rule lemma_DERIV_subst) -apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+ -apply simp -done + by (induct p, auto intro!: DERIV_intros simp add: pderiv_pCons) text{* Consequences of the derivative theorem above*} diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Ln.thy --- a/src/HOL/Ln.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Ln.thy Tue Jun 30 21:23:01 2009 +0200 @@ -343,43 +343,7 @@ done lemma DERIV_ln: "0 < x ==> DERIV ln x :> 1 / x" - apply (unfold deriv_def, unfold LIM_eq, clarsimp) - apply (rule exI) - apply (rule conjI) - prefer 2 - apply clarsimp - apply (subgoal_tac "(ln (x + xa) - ln x) / xa - (1 / x) = - (ln (1 + xa / x) - xa / x) / xa") - apply (erule ssubst) - apply (subst abs_divide) - apply (rule mult_imp_div_pos_less) - apply force - apply (rule order_le_less_trans) - apply (rule abs_ln_one_plus_x_minus_x_bound) - apply (subst abs_divide) - apply (subst abs_of_pos, assumption) - apply (erule mult_imp_div_pos_le) - apply (subgoal_tac "abs xa < min (x / 2) (r * x^2 / 2)") - apply force - apply assumption - apply (simp add: power2_eq_square mult_compare_simps) - apply (rule mult_imp_div_pos_less) - apply (rule mult_pos_pos, assumption, assumption) - apply (subgoal_tac "xa * xa = abs xa * abs xa") - apply (erule ssubst) - apply (subgoal_tac "abs xa * (abs xa * 2) < abs xa * (r * (x * x))") - apply (simp only: mult_ac) - apply (rule mult_strict_left_mono) - apply (erule conjE, assumption) - apply force - apply simp - apply (subst ln_div [THEN sym]) - apply arith - apply (auto simp add: algebra_simps add_frac_eq frac_eq_eq - add_divide_distrib power2_eq_square) - apply (rule mult_pos_pos, assumption)+ - apply assumption -done + by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse) lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)" proof - diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/MacLaurin.thy --- a/src/HOL/MacLaurin.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/MacLaurin.thy Tue Jun 30 21:23:01 2009 +0200 @@ -27,36 +27,6 @@ lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" by arith -text{*A crude tactic to differentiate by proof.*} - -lemmas deriv_rulesI = - DERIV_ident DERIV_const DERIV_cos DERIV_cmult - DERIV_sin DERIV_exp DERIV_inverse DERIV_pow - DERIV_add DERIV_diff DERIV_mult DERIV_minus - DERIV_inverse_fun DERIV_quotient DERIV_fun_pow - DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos - DERIV_ident DERIV_const DERIV_cos - -ML -{* -local -exception DERIV_name; -fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f -| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f -| get_fun_name _ = raise DERIV_name; - -in - -fun deriv_tac ctxt = SUBGOAL (fn (prem, i) => - resolve_tac @{thms deriv_rulesI} i ORELSE - ((rtac (read_instantiate ctxt [(("f", 0), get_fun_name prem)] - @{thm DERIV_chain2}) i) handle DERIV_name => no_tac)); - -fun DERIV_tac ctxt = ALLGOALS (fn i => REPEAT (deriv_tac ctxt i)); - -end -*} - lemma Maclaurin_lemma2: assumes diff: "\m t. m < n \ 0\t \ t\h \ DERIV (diff m) t :> diff (Suc m) t" assumes n: "n = Suc k" @@ -91,13 +61,12 @@ apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc) apply (rule DERIV_cmult) apply (rule lemma_DERIV_subst) - apply (best intro: DERIV_chain2 intro!: DERIV_intros) + apply (best intro!: DERIV_intros) apply (subst fact_Suc) apply (subst real_of_nat_mult) apply (simp add: mult_ac) done - lemma Maclaurin: assumes h: "0 < h" assumes n: "0 < n" @@ -565,9 +534,7 @@ apply (clarify) apply (subst (1 2 3) mod_Suc_eq_Suc_mod) apply (cut_tac m=m in mod_exhaust_less_4) - apply (safe, simp_all) - apply (rule DERIV_minus, simp) - apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp) + apply (safe, auto intro!: DERIV_intros) done from Maclaurin_all_le [OF diff_0 DERIV_diff] obtain t where t1: "\t\ \ \x\" and diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/MicroJava/BV/BVExample.thy --- a/src/HOL/MicroJava/BV/BVExample.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/MicroJava/BV/BVExample.thy Tue Jun 30 21:23:01 2009 +0200 @@ -450,7 +450,7 @@ qed lemma [code]: - "iter f step ss w = while (\(ss, w). \ (is_empty w)) + "iter f step ss w = while (\(ss, w). \ is_empty w) (\(ss, w). let p = some_elem w in propa f (step p (ss ! p)) ss (w - {p})) (ss, w)" diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/NthRoot.thy --- a/src/HOL/NthRoot.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/NthRoot.thy Tue Jun 30 21:23:01 2009 +0200 @@ -372,6 +372,41 @@ using odd_pos [OF n] by (rule isCont_real_root) qed +lemma DERIV_even_real_root: + assumes n: "0 < n" and "even n" + assumes x: "x < 0" + shows "DERIV (root n) x :> inverse (- real n * root n x ^ (n - Suc 0))" +proof (rule DERIV_inverse_function) + show "x - 1 < x" by simp + show "x < 0" using x . +next + show "\y. x - 1 < y \ y < 0 \ - (root n y ^ n) = y" + proof (rule allI, rule impI, erule conjE) + fix y assume "x - 1 < y" and "y < 0" + hence "root n (-y) ^ n = -y" using `0 < n` by simp + with real_root_minus[OF `0 < n`] and `even n` + show "- (root n y ^ n) = y" by simp + qed +next + show "DERIV (\x. - (x ^ n)) (root n x) :> - real n * root n x ^ (n - Suc 0)" + by (auto intro!: DERIV_intros) + show "- real n * root n x ^ (n - Suc 0) \ 0" + using n x by simp + show "isCont (root n) x" + using n by (rule isCont_real_root) +qed + +lemma DERIV_real_root_generic: + assumes "0 < n" and "x \ 0" + and even: "\ even n ; 0 < x \ \ D = inverse (real n * root n x ^ (n - Suc 0))" + and even: "\ even n ; x < 0 \ \ D = - inverse (real n * root n x ^ (n - Suc 0))" + and odd: "odd n \ D = inverse (real n * root n x ^ (n - Suc 0))" + shows "DERIV (root n) x :> D" +using assms by (cases "even n", cases "0 < x", + auto intro: DERIV_real_root[THEN DERIV_cong] + DERIV_odd_real_root[THEN DERIV_cong] + DERIV_even_real_root[THEN DERIV_cong]) + subsection {* Square Root *} definition @@ -456,9 +491,21 @@ lemma isCont_real_sqrt: "isCont sqrt x" unfolding sqrt_def by (rule isCont_real_root [OF pos2]) +lemma DERIV_real_sqrt_generic: + assumes "x \ 0" + assumes "x > 0 \ D = inverse (sqrt x) / 2" + assumes "x < 0 \ D = - inverse (sqrt x) / 2" + shows "DERIV sqrt x :> D" + using assms unfolding sqrt_def + by (auto intro!: DERIV_real_root_generic) + lemma DERIV_real_sqrt: "0 < x \ DERIV sqrt x :> inverse (sqrt x) / 2" -unfolding sqrt_def by (rule DERIV_real_root [OF pos2, simplified]) + using DERIV_real_sqrt_generic by simp + +declare + DERIV_real_sqrt_generic[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_real_root_generic[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)" apply auto diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Tools/Datatype/datatype.ML --- a/src/HOL/Tools/Datatype/datatype.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Tools/Datatype/datatype.ML Tue Jun 30 21:23:01 2009 +0200 @@ -18,7 +18,7 @@ val the_info : theory -> string -> info val the_descr : theory -> string list -> descr * (string * sort) list * string list - * (string list * string list) * (typ list * typ list) + * string * (string list * string list) * (typ list * typ list) val the_spec : theory -> string -> (string * sort) list * (string * typ list) list val get_constrs : theory -> string -> (string * typ) list option val get_all : theory -> info Symtab.table @@ -125,9 +125,10 @@ val names = map Long_Name.base_name (the_default tycos (#alt_names info)); val (auxnames, _) = Name.make_context names - |> fold_map (yield_singleton Name.variants o name_of_typ) Us + |> fold_map (yield_singleton Name.variants o name_of_typ) Us; + val prefix = space_implode "_" names; - in (descr, vs, tycos, (names, auxnames), (Ts, Us)) end; + in (descr, vs, tycos, prefix, (names, auxnames), (Ts, Us)) end; fun get_constrs thy dtco = case try (the_spec thy) dtco diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Tools/quickcheck_generators.ML --- a/src/HOL/Tools/quickcheck_generators.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Tools/quickcheck_generators.ML Tue Jun 30 21:23:01 2009 +0200 @@ -11,10 +11,10 @@ -> (seed -> ('b * (unit -> term)) * seed) -> (seed -> seed * seed) -> seed -> (('a -> 'b) * (unit -> Term.term)) * seed val ensure_random_typecopy: string -> theory -> theory - val random_aux_specification: string -> term list -> local_theory -> local_theory + val random_aux_specification: string -> string -> term list -> local_theory -> local_theory val mk_random_aux_eqs: theory -> Datatype.descr -> (string * sort) list -> string list -> string list * string list -> typ list * typ list - -> string * (term list * (term * term) list) + -> term list * (term * term) list val ensure_random_datatype: Datatype.config -> string list -> theory -> theory val eval_ref: (unit -> int -> seed -> term list option * seed) option ref val setup: theory -> theory @@ -184,18 +184,18 @@ end; -fun random_aux_primrec_multi prefix [eq] lthy = +fun random_aux_primrec_multi auxname [eq] lthy = lthy |> random_aux_primrec eq |>> (fn simp => [simp]) - | random_aux_primrec_multi prefix (eqs as _ :: _ :: _) lthy = + | random_aux_primrec_multi auxname (eqs as _ :: _ :: _) lthy = let val thy = ProofContext.theory_of lthy; val (lhss, rhss) = map_split (HOLogic.dest_eq o HOLogic.dest_Trueprop) eqs; val (vs, (arg as Free (v, _)) :: _) = map_split (fn (t1 $ t2) => (t1, t2)) lhss; val Ts = map fastype_of lhss; val tupleT = foldr1 HOLogic.mk_prodT Ts; - val aux_lhs = Free ("mutual_" ^ prefix, fastype_of arg --> tupleT) $ arg; + val aux_lhs = Free ("mutual_" ^ auxname, fastype_of arg --> tupleT) $ arg; val aux_eq = (HOLogic.mk_Trueprop o HOLogic.mk_eq) (aux_lhs, foldr1 HOLogic.mk_prod rhss); fun mk_proj t [T] = [t] @@ -223,7 +223,7 @@ |-> (fn (aux_simp, proj_defs) => prove_eqs aux_simp proj_defs) end; -fun random_aux_specification prefix eqs lthy = +fun random_aux_specification prfx name eqs lthy = let val vs = fold Term.add_free_names ((snd o strip_comb o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o hd) eqs) []; @@ -237,10 +237,10 @@ val ext_simps = map (fn thm => fun_cong OF [fun_cong OF [thm]]) proto_simps; val tac = ALLGOALS (ProofContext.fact_tac ext_simps); in (map (fn prop => SkipProof.prove lthy vs [] prop (K tac)) eqs, lthy) end; - val b = Binding.qualify true prefix (Binding.name "simps"); + val b = Binding.qualify true prfx (Binding.qualify true name (Binding.name "simps")); in lthy - |> random_aux_primrec_multi prefix proto_eqs + |> random_aux_primrec_multi (name ^ prfx) proto_eqs |-> (fn proto_simps => prove_simps proto_simps) |-> (fn simps => LocalTheory.note Thm.generatedK ((b, Code.add_default_eqn_attrib :: map (Attrib.internal o K) @@ -252,6 +252,8 @@ (* constructing random instances on datatypes *) +val random_auxN = "random_aux"; + fun mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us) = let val mk_const = curry (Sign.mk_const thy); @@ -259,7 +261,6 @@ val i1 = @{term "(i\code_numeral) - 1"}; val j = @{term "j\code_numeral"}; val seed = @{term "s\Random.seed"}; - val random_auxN = "random_aux"; val random_auxsN = map (prefix (random_auxN ^ "_")) (names @ auxnames); fun termifyT T = HOLogic.mk_prodT (T, @{typ "unit \ term"}); val rTs = Ts @ Us; @@ -316,10 +317,9 @@ $ seed; val auxs_lhss = map (fn t => t $ i $ j $ seed) random_auxs; val auxs_rhss = map mk_select gen_exprss; - val prefix = space_implode "_" (random_auxN :: names); - in (prefix, (random_auxs, auxs_lhss ~~ auxs_rhss)) end; + in (random_auxs, auxs_lhss ~~ auxs_rhss) end; -fun mk_random_datatype config descr vs tycos (names, auxnames) (Ts, Us) thy = +fun mk_random_datatype config descr vs tycos prfx (names, auxnames) (Ts, Us) thy = let val _ = DatatypeAux.message config "Creating quickcheck generators ..."; val i = @{term "i\code_numeral"}; @@ -329,14 +329,14 @@ else @{term "max :: code_numeral \ code_numeral \ code_numeral"} $ HOLogic.mk_number @{typ code_numeral} l $ i | NONE => i; - val (prefix, (random_auxs, auxs_eqs)) = (apsnd o apsnd o map) mk_prop_eq + val (random_auxs, auxs_eqs) = (apsnd o map) mk_prop_eq (mk_random_aux_eqs thy descr vs tycos (names, auxnames) (Ts, Us)); val random_defs = map_index (fn (k, T) => mk_prop_eq (HOLogic.mk_random T i, nth random_auxs k $ mk_size_arg k $ i)) Ts; in thy |> TheoryTarget.instantiation (tycos, vs, @{sort random}) - |> random_aux_specification prefix auxs_eqs + |> random_aux_specification prfx random_auxN auxs_eqs |> `(fn lthy => map (Syntax.check_term lthy) random_defs) |-> (fn random_defs' => fold_map (fn random_def => Specification.definition (NONE, (Attrib.empty_binding, @@ -359,7 +359,7 @@ let val pp = Syntax.pp_global thy; val algebra = Sign.classes_of thy; - val (descr, raw_vs, tycos, (names, auxnames), raw_TUs) = + val (descr, raw_vs, tycos, prfx, (names, auxnames), raw_TUs) = Datatype.the_descr thy raw_tycos; val typrep_vs = (map o apsnd) (curry (Sorts.inter_sort algebra) @{sort typerep}) raw_vs; @@ -374,7 +374,7 @@ in if has_inst then thy else case perhaps_constrain thy (random_insts @ term_of_insts) typrep_vs of SOME constrain => mk_random_datatype config descr - (map constrain typrep_vs) tycos (names, auxnames) + (map constrain typrep_vs) tycos prfx (names, auxnames) ((pairself o map o map_atyps) (fn TFree v => TFree (constrain v)) raw_TUs) thy | NONE => thy end; diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Tools/res_atp.ML --- a/src/HOL/Tools/res_atp.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Tools/res_atp.ML Tue Jun 30 21:23:01 2009 +0200 @@ -11,8 +11,9 @@ val prepare_clauses : bool -> thm list -> thm list -> (thm * (ResHolClause.axiom_name * ResHolClause.clause_id)) list -> (thm * (ResHolClause.axiom_name * ResHolClause.clause_id)) list -> theory -> - ResHolClause.axiom_name vector * (ResHolClause.clause list * ResHolClause.clause list * - ResHolClause.clause list * ResClause.classrelClause list * ResClause.arityClause list) + ResHolClause.axiom_name vector * + (ResHolClause.clause list * ResHolClause.clause list * ResHolClause.clause list * + ResHolClause.clause list * ResClause.classrelClause list * ResClause.arityClause list) end; structure ResAtp: RES_ATP = @@ -550,13 +551,14 @@ and tycons = type_consts_of_terms thy (ccltms@axtms) (*TFrees in conjecture clauses; TVars in axiom clauses*) val conjectures = ResHolClause.make_conjecture_clauses dfg thy ccls + val (_, extra_clauses) = ListPair.unzip (ResHolClause.make_axiom_clauses dfg thy extra_cls) val (clnames,axiom_clauses) = ListPair.unzip (ResHolClause.make_axiom_clauses dfg thy axcls) val helper_clauses = ResHolClause.get_helper_clauses dfg thy isFO (conjectures, extra_cls, []) val (supers',arity_clauses) = ResClause.make_arity_clauses_dfg dfg thy tycons supers val classrel_clauses = ResClause.make_classrel_clauses thy subs supers' in (Vector.fromList clnames, - (conjectures, axiom_clauses, helper_clauses, classrel_clauses, arity_clauses)) + (conjectures, axiom_clauses, extra_clauses, helper_clauses, classrel_clauses, arity_clauses)) end end; diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Tools/res_hol_clause.ML --- a/src/HOL/Tools/res_hol_clause.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Tools/res_hol_clause.ML Tue Jun 30 21:23:01 2009 +0200 @@ -36,10 +36,12 @@ clause list * (thm * (axiom_name * clause_id)) list * string list -> clause list val tptp_write_file: bool -> Path.T -> - clause list * clause list * clause list * ResClause.classrelClause list * ResClause.arityClause list -> + clause list * clause list * clause list * clause list * + ResClause.classrelClause list * ResClause.arityClause list -> int * int val dfg_write_file: bool -> Path.T -> - clause list * clause list * clause list * ResClause.classrelClause list * ResClause.arityClause list -> + clause list * clause list * clause list * clause list * + ResClause.classrelClause list * ResClause.arityClause list -> int * int end @@ -459,11 +461,11 @@ Output.debug (fn () => "Constant: " ^ c ^ " arity:\t" ^ Int.toString n ^ (if needs_hBOOL const_needs_hBOOL c then " needs hBOOL" else "")); -fun count_constants (conjectures, axclauses, helper_clauses, _, _) = +fun count_constants (conjectures, _, extra_clauses, helper_clauses, _, _) = if minimize_applies then let val (const_min_arity, const_needs_hBOOL) = fold count_constants_clause conjectures (Symtab.empty, Symtab.empty) - |> fold count_constants_clause axclauses + |> fold count_constants_clause extra_clauses |> fold count_constants_clause helper_clauses val _ = List.app (display_arity const_needs_hBOOL) (Symtab.dest (const_min_arity)) in (const_min_arity, const_needs_hBOOL) end @@ -473,7 +475,8 @@ fun tptp_write_file t_full file clauses = let - val (conjectures, axclauses, helper_clauses, classrel_clauses, arity_clauses) = clauses + val (conjectures, axclauses, _, helper_clauses, + classrel_clauses, arity_clauses) = clauses val (cma, cnh) = count_constants clauses val params = (t_full, cma, cnh) val (tptp_clss,tfree_litss) = ListPair.unzip (map (clause2tptp params) conjectures) @@ -494,7 +497,8 @@ fun dfg_write_file t_full file clauses = let - val (conjectures, axclauses, helper_clauses, classrel_clauses, arity_clauses) = clauses + val (conjectures, axclauses, _, helper_clauses, + classrel_clauses, arity_clauses) = clauses val (cma, cnh) = count_constants clauses val params = (t_full, cma, cnh) val (dfg_clss, tfree_litss) = ListPair.unzip (map (clause2dfg params) conjectures) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Tools/res_reconstruct.ML --- a/src/HOL/Tools/res_reconstruct.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Tools/res_reconstruct.ML Tue Jun 30 21:23:01 2009 +0200 @@ -457,9 +457,28 @@ in trace msg; msg end; - - (* ==== CHECK IF PROOF OF E OR VAMPIRE WAS SUCCESSFUL === *) - + (*=== EXTRACTING PROOF-TEXT === *) + + val begin_proof_strings = ["# SZS output start CNFRefutation.", + "=========== Refutation ==========", + "Here is a proof"]; + val end_proof_strings = ["# SZS output end CNFRefutation", + "======= End of refutation =======", + "Formulae used in the proof"]; + fun get_proof_extract proof = + let + (*splits to_split by the first possible of a list of splitters*) + val (begin_string, end_string) = + (find_first (fn s => String.isSubstring s proof) begin_proof_strings, + find_first (fn s => String.isSubstring s proof) end_proof_strings) + in + if is_none begin_string orelse is_none end_string + then error "Could not extract proof (no substring indicating a proof)" + else proof |> first_field (the begin_string) |> the |> snd + |> first_field (the end_string) |> the |> fst end; + +(* ==== CHECK IF PROOF OF E OR VAMPIRE WAS SUCCESSFUL === *) + val failure_strings_E = ["SZS status: Satisfiable","SZS status Satisfiable", "SZS status: ResourceOut","SZS status ResourceOut","# Cannot determine problem status"]; val failure_strings_vampire = ["Satisfiability detected", "Refutation not found", "CANNOT PROVE"]; @@ -469,31 +488,15 @@ fun find_failure proof = let val failures = map_filter (fn s => if String.isSubstring s proof then SOME s else NONE) - (failure_strings_E @ failure_strings_vampire @ failure_strings_SPASS @ failure_strings_remote) - in if null failures then NONE else SOME (hd failures) end; - - (*=== EXTRACTING PROOF-TEXT === *) - - val begin_proof_strings = ["# SZS output start CNFRefutation.", - "=========== Refutation ==========", - "Here is a proof"]; - val end_proof_strings = ["# SZS output end CNFRefutation", - "======= End of refutation =======", - "Formulae used in the proof"]; - fun get_proof_extract proof = - let - (*splits to_split by the first possible of a list of splitters*) - fun first_field_any [] to_split = NONE - | first_field_any (splitter::splitters) to_split = - let - val result = (first_field splitter to_split) - in - if isSome result then result else first_field_any splitters to_split - end - val (a:string, b:string) = valOf (first_field_any begin_proof_strings proof) - val (proofextract:string, c:string) = valOf (first_field_any end_proof_strings b) - in proofextract end; - + (failure_strings_E @ failure_strings_vampire @ failure_strings_SPASS @ failure_strings_remote) + val correct = null failures andalso + exists (fn s => String.isSubstring s proof) begin_proof_strings andalso + exists (fn s => String.isSubstring s proof) end_proof_strings + in + if correct then NONE + else if null failures then SOME "Output of ATP not in proper format" + else SOME (hd failures) end; + (* === EXTRACTING LEMMAS === *) (* lines have the form "cnf(108, axiom, ...", the number (108) has to be extracted)*) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/Transcendental.thy Tue Jun 30 21:23:01 2009 +0200 @@ -784,9 +784,8 @@ also have "\ = \f n * real (Suc n) * R' ^ n\ * \x - y\" unfolding abs_mult real_mult_assoc[symmetric] by algebra finally show ?thesis . qed } - { fix n - from DERIV_pow[of "Suc n" x0, THEN DERIV_cmult[where c="f n"]] - show "DERIV (\ x. ?f x n) x0 :> (?f' x0 n)" unfolding real_mult_assoc by auto } + { fix n show "DERIV (\ x. ?f x n) x0 :> (?f' x0 n)" + by (auto intro!: DERIV_intros simp del: power_Suc) } { fix x assume "x \ {-R' <..< R'}" hence "R' \ {-R <..< R}" and "norm x < norm R'" using assms `R' < R` by auto have "summable (\ n. f n * x^n)" proof (rule summable_le2[THEN conjunct1, OF _ powser_insidea[OF converges[OF `R' \ {-R <..< R}`] `norm x < norm R'`]], rule allI) @@ -1362,6 +1361,12 @@ by (rule DERIV_cos [THEN DERIV_isCont]) +declare + DERIV_exp[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_ln[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_sin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_cos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + subsection {* Properties of Sine and Cosine *} lemma sin_zero [simp]: "sin 0 = 0" @@ -1410,24 +1415,17 @@ by auto lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\) x :> -(2 * cos(x) * sin(x))" -apply (rule lemma_DERIV_subst) -apply (rule DERIV_cos_realpow2a, auto) -done + by (auto intro!: DERIV_intros) (* most useful *) lemma DERIV_cos_cos_mult3 [simp]: "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" -apply (rule lemma_DERIV_subst) -apply (rule DERIV_cos_cos_mult2, auto) -done + by (auto intro!: DERIV_intros) lemma DERIV_sin_circle_all: "\x. DERIV (%x. (sin x)\ + (cos x)\) x :> (2*cos(x)*sin(x) - 2*cos(x)*sin(x))" -apply (simp only: diff_minus, safe) -apply (rule DERIV_add) -apply (auto simp add: numeral_2_eq_2) -done + by (auto intro!: DERIV_intros) lemma DERIV_sin_circle_all_zero [simp]: "\x. DERIV (%x. (sin x)\ + (cos x)\) x :> 0" @@ -1513,22 +1511,12 @@ apply (rule DERIV_cos, auto) done -lemmas DERIV_intros = DERIV_ident DERIV_const DERIV_cos DERIV_cmult - DERIV_sin DERIV_exp DERIV_inverse DERIV_pow - DERIV_add DERIV_diff DERIV_mult DERIV_minus - DERIV_inverse_fun DERIV_quotient DERIV_fun_pow - DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos - (* lemma *) lemma lemma_DERIV_sin_cos_add: "\x. DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0" -apply (safe, rule lemma_DERIV_subst) -apply (best intro!: DERIV_intros intro: DERIV_chain2) - --{*replaces the old @{text DERIV_tac}*} -apply (auto simp add: algebra_simps) -done + by (auto intro!: DERIV_intros simp add: algebra_simps) lemma sin_cos_add [simp]: "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + @@ -1550,10 +1538,8 @@ lemma lemma_DERIV_sin_cos_minus: "\x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0" -apply (safe, rule lemma_DERIV_subst) -apply (best intro!: DERIV_intros intro: DERIV_chain2) -apply (simp add: algebra_simps) -done + by (auto intro!: DERIV_intros simp add: algebra_simps) + lemma sin_cos_minus: "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0" @@ -1722,7 +1708,7 @@ apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) done - + lemma pi_half: "pi/2 = (THE x. 0 \ x & x \ 2 & cos x = 0)" by (simp add: pi_def) @@ -2121,10 +2107,7 @@ lemma lemma_DERIV_tan: "cos x \ 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\)" -apply (rule lemma_DERIV_subst) -apply (best intro!: DERIV_intros intro: DERIV_chain2) -apply (auto simp add: divide_inverse numeral_2_eq_2) -done + by (auto intro!: DERIV_intros simp add: field_simps numeral_2_eq_2) lemma DERIV_tan [simp]: "cos x \ 0 ==> DERIV tan x :> inverse((cos x)\)" by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric]) @@ -2500,6 +2483,11 @@ apply (simp, simp, simp, rule isCont_arctan) done +declare + DERIV_arcsin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_arccos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + DERIV_arctan[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] + subsection {* More Theorems about Sin and Cos *} lemma cos_45: "cos (pi / 4) = sqrt 2 / 2" @@ -2589,11 +2577,7 @@ by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)" -apply (rule lemma_DERIV_subst) -apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2) -apply (best intro!: DERIV_intros intro: DERIV_chain2)+ -apply (simp (no_asm)) -done + by (auto intro!: DERIV_intros) lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n" proof - @@ -2634,11 +2618,7 @@ by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto) lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)" -apply (rule lemma_DERIV_subst) -apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2) -apply (best intro!: DERIV_intros intro: DERIV_chain2)+ -apply (simp (no_asm)) -done + by (auto intro!: DERIV_intros) lemma sin_zero_abs_cos_one: "sin x = 0 ==> \cos x\ = 1" by (auto simp add: sin_zero_iff even_mult_two_ex) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/ex/Predicate_Compile_ex.thy --- a/src/HOL/ex/Predicate_Compile_ex.thy Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/ex/Predicate_Compile_ex.thy Tue Jun 30 21:23:01 2009 +0200 @@ -58,7 +58,7 @@ lemma [code_pred_intros]: "r a b ==> tranclp r a b" -"r a b ==> tranclp r b c ==> tranclp r a c" +"r a b ==> tranclp r b c ==> tranclp r a c" by auto (* Setup requires quick and dirty proof *) @@ -71,7 +71,6 @@ thm tranclp.equation *) - inductive succ :: "nat \ nat \ bool" where "succ 0 1" | "succ m n \ succ (Suc m) (Suc n)" diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/HOL/ex/predicate_compile.ML --- a/src/HOL/ex/predicate_compile.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/HOL/ex/predicate_compile.ML Tue Jun 30 21:23:01 2009 +0200 @@ -9,6 +9,8 @@ type mode = int list option list * int list val add_equations_of: string list -> theory -> theory val register_predicate : (thm list * thm * int) -> theory -> theory + val is_registered : theory -> string -> bool + val fetch_pred_data : theory -> string -> (thm list * thm * int) val predfun_intro_of: theory -> string -> mode -> thm val predfun_elim_of: theory -> string -> mode -> thm val strip_intro_concl: int -> term -> term * (term list * term list) @@ -17,14 +19,18 @@ val modes_of: theory -> string -> mode list val intros_of: theory -> string -> thm list val nparams_of: theory -> string -> int + val add_intro: thm -> theory -> theory + val set_elim: thm -> theory -> theory val setup: theory -> theory val code_pred: string -> Proof.context -> Proof.state val code_pred_cmd: string -> Proof.context -> Proof.state -(* val print_alternative_rules: theory -> theory (*FIXME diagnostic command?*) *) + val print_stored_rules: theory -> unit val do_proofs: bool ref + val mk_casesrule : Proof.context -> int -> thm list -> term val analyze_compr: theory -> term -> term val eval_ref: (unit -> term Predicate.pred) option ref val add_equations : string -> theory -> theory + val code_pred_intros_attrib : attribute end; structure Predicate_Compile : PREDICATE_COMPILE = @@ -187,7 +193,7 @@ of NONE => error ("No such predicate " ^ quote name) | SOME data => data; -val is_pred = is_some oo lookup_pred_data +val is_registered = is_some oo lookup_pred_data val all_preds_of = Graph.keys o PredData.get @@ -223,25 +229,26 @@ val predfun_elim_of = #elim ooo the_predfun_data +fun print_stored_rules thy = + let + val preds = (Graph.keys o PredData.get) thy + fun print pred () = let + val _ = writeln ("predicate: " ^ pred) + val _ = writeln ("number of parameters: " ^ string_of_int (nparams_of thy pred)) + val _ = writeln ("introrules: ") + val _ = fold (fn thm => fn u => writeln (Display.string_of_thm thm)) + (rev (intros_of thy pred)) () + in + if (has_elim thy pred) then + writeln ("elimrule: " ^ Display.string_of_thm (the_elim_of thy pred)) + else + writeln ("no elimrule defined") + end + in + fold print preds () + end; -(* replaces print_alternative_rules *) -(* TODO: -fun print_alternative_rules thy = let - val d = IndCodegenData.get thy - val preds = (Symtab.keys (#intro_rules d)) union (Symtab.keys (#elim_rules d)) - val _ = tracing ("preds: " ^ (makestring preds)) - fun print pred = let - val _ = tracing ("predicate: " ^ pred) - val _ = tracing ("introrules: ") - val _ = fold (fn thm => fn u => tracing (makestring thm)) - (rev (Symtab.lookup_list (#intro_rules d) pred)) () - val _ = tracing ("casesrule: ") - val _ = tracing (makestring (Symtab.lookup (#elim_rules d) pred)) - in () end - val _ = map print preds - in thy end; -*) - +(** preprocessing rules **) fun imp_prems_conv cv ct = case Thm.term_of ct of @@ -298,6 +305,23 @@ val add = apsnd (cons (mode, mk_predfun_data data)) in PredData.map (Graph.map_node name (map_pred_data add)) end +fun is_inductive_predicate thy name = + is_some (try (Inductive.the_inductive (ProofContext.init thy)) name) + +fun depending_preds_of thy intros = fold Term.add_consts (map Thm.prop_of intros) [] |> map fst + |> filter (fn c => is_inductive_predicate thy c orelse is_registered thy c) + +(* code dependency graph *) +fun dependencies_of thy name = + let + val (intros, elim, nparams) = fetch_pred_data thy name + val data = mk_pred_data ((intros, SOME elim, nparams), []) + val keys = depending_preds_of thy intros + in + (data, keys) + end; + +(* TODO: add_edges - by analysing dependencies *) fun add_intro thm thy = let val (name, _) = dest_Const (fst (strip_intro_concl 0 (prop_of thm))) fun cons_intro gr = @@ -320,10 +344,13 @@ fun set (intros, elim, _ ) = (intros, elim, nparams) in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end -fun register_predicate (intros, elim, nparams) = let +fun register_predicate (intros, elim, nparams) thy = let val (name, _) = dest_Const (fst (strip_intro_concl nparams (prop_of (hd intros)))) fun set _ = (intros, SOME elim, nparams) - in PredData.map (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), []))) end + in + PredData.map (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), [])) + #> fold Graph.add_edge (map (pair name) (depending_preds_of thy intros))) thy + end (* Mode analysis *) @@ -625,10 +652,11 @@ and compile_param thy modes (NONE, t) = t | compile_param thy modes (m as SOME (Mode ((iss, is'), is, ms)), t) = - (case t of - Abs _ => compile_param_ext thy modes (m, t) - | _ => let - val (f, args) = strip_comb t + (* (case t of + Abs _ => error "compile_param: Invalid term" *) (* compile_param_ext thy modes (m, t) *) + (* | _ => let *) + let + val (f, args) = strip_comb (Envir.eta_contract t) val (params, args') = chop (length ms) args val params' = map (compile_param thy modes) (ms ~~ params) val f' = case f of @@ -637,7 +665,7 @@ Const (predfun_name_of thy name (iss, is'), funT'_of (iss, is') T) else error "compile param: Not an inductive predicate with correct mode" | Free (name, T) => Free (name, funT_of T (SOME is')) - in list_comb (f', params' @ args') end) + in list_comb (f', params' @ args') end | compile_param _ _ _ = error "compile params" @@ -1116,7 +1144,7 @@ (* VERY LARGE SIMILIRATIY to function prove_param -- join both functions *) -(* + fun prove_param2 thy modes (NONE, t) = all_tac | prove_param2 thy modes (m as SOME (Mode (mode, is, ms)), t) = let val (f, args) = strip_comb t @@ -1132,7 +1160,7 @@ THEN print_tac "after simplification in prove_args" THEN (EVERY (map (prove_param2 thy modes) (ms ~~ params))) end -*) + fun prove_expr2 thy modes (SOME (Mode (mode, is, ms)), t) = (case strip_comb t of @@ -1140,14 +1168,16 @@ if AList.defined op = modes name then etac @{thm bindE} 1 THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))) + THEN new_print_tac "prove_expr2-before" THEN (debug_tac (Syntax.string_of_term_global thy (prop_of (predfun_elim_of thy name mode)))) THEN (etac (predfun_elim_of thy name mode) 1) THEN new_print_tac "prove_expr2" (* TODO -- FIXME: replace remove_last_goal*) - THEN (EVERY (replicate (length args) (remove_last_goal thy))) + (* THEN (EVERY (replicate (length args) (remove_last_goal thy))) *) + THEN (EVERY (map (prove_param thy modes) (ms ~~ args))) THEN new_print_tac "finished prove_expr2" - (* THEN (EVERY (map (prove_param thy modes) (ms ~~ args))) *) + else error "Prove expr2 if case not implemented" | _ => etac @{thm bindE} 1) | prove_expr2 _ _ _ = error "Prove expr2 not implemented" @@ -1243,7 +1273,7 @@ end; val prems_tac = prove_prems2 in_ts' param_vs ps in - print_tac "starting prove_clause2" + new_print_tac "starting prove_clause2" THEN etac @{thm bindE} 1 THEN (etac @{thm singleE'} 1) THEN (TRY (etac @{thm Pair_inject} 1)) @@ -1259,6 +1289,7 @@ (DETERM (TRY (rtac @{thm unit.induct} 1))) THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all}))) THEN (rtac (predfun_intro_of thy pred mode) 1) + THEN (REPEAT_DETERM (rtac @{thm refl} 2)) THEN (EVERY (map prove_clause (clauses ~~ (1 upto (length clauses))))) end; @@ -1321,7 +1352,7 @@ | Negprem _ => error ("Double negation not allowed in premise: " ^ (Syntax.string_of_term_global thy (c $ t))) | Sidecond t => Sidecond (c $ t)) | (c as Const (s, _), ts) => - if is_pred thy s then + if is_registered thy s then let val (ts1, ts2) = chop (nparams_of thy s) ts in Prem (ts2, list_comb (c, ts1)) end else Sidecond t @@ -1373,7 +1404,7 @@ val _ = map (Output.tracing o (Syntax.string_of_term_global thy')) (flat ts) val pred_mode = maps (fn (s, (T, _)) => map (pair (s, T)) ((the o AList.lookup (op =) modes) s)) clauses' - val _ = tracing "Proving equations..." + val _ = Output.tracing "Proving equations..." val result_thms = prove_preds thy' all_vs param_vs (extra_modes @ modes) clauses (pred_mode ~~ (flat ts)) val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss @@ -1409,21 +1440,6 @@ val cases = map mk_case intros in Logic.list_implies (assm :: cases, prop) end; -(* code dependency graph *) - -fun dependencies_of thy name = - let - fun is_inductive_predicate thy name = - is_some (try (Inductive.the_inductive (ProofContext.init thy)) name) - val (intro, elim, nparams) = fetch_pred_data thy name - val data = mk_pred_data ((intro, SOME elim, nparams), []) - val intros = map Thm.prop_of (#intros (rep_pred_data data)) - val keys = fold Term.add_consts intros [] |> map fst - |> filter (is_inductive_predicate thy) - in - (data, keys) - end; - fun add_equations name thy = let val thy' = PredData.map (Graph.extend (dependencies_of thy) name) thy |> Theory.checkpoint; @@ -1437,17 +1453,15 @@ scc thy' |> Theory.checkpoint in thy'' end + +fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I); + +val code_pred_intros_attrib = attrib add_intro; + (** user interface **) local -fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I); - -(* -val add_elim_attrib = attrib set_elim; -*) - - (* TODO: make TheoryDataFun to GenericDataFun & remove duplication of local theory and theory *) (* TODO: must create state to prove multiple cases *) fun generic_code_pred prep_const raw_const lthy = diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Pure/Isar/class_target.ML --- a/src/Pure/Isar/class_target.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Pure/Isar/class_target.ML Tue Jun 30 21:23:01 2009 +0200 @@ -32,6 +32,7 @@ (*instances*) val init_instantiation: string list * (string * sort) list * sort -> theory -> local_theory + val instance_arity_cmd: xstring list * xstring list * xstring -> theory -> Proof.state val instantiation_instance: (local_theory -> local_theory) -> local_theory -> Proof.state val prove_instantiation_instance: (Proof.context -> tactic) @@ -44,7 +45,8 @@ val instantiation_param: local_theory -> binding -> string option val confirm_declaration: binding -> local_theory -> local_theory val pretty_instantiation: local_theory -> Pretty.T - val instance_arity_cmd: xstring * xstring list * xstring -> theory -> Proof.state + val read_multi_arity: theory -> xstring list * xstring list * xstring + -> string list * (string * sort) list * sort val type_name: string -> string (*subclasses*) @@ -419,6 +421,15 @@ |> find_first (fn (_, (v, _)) => Binding.name_of b = v) |> Option.map (fst o fst); +fun read_multi_arity thy (raw_tycos, raw_sorts, raw_sort) = + let + val all_arities = map (fn raw_tyco => Sign.read_arity thy + (raw_tyco, raw_sorts, raw_sort)) raw_tycos; + val tycos = map #1 all_arities; + val (_, sorts, sort) = hd all_arities; + val vs = Name.names Name.context Name.aT sorts; + in (tycos, vs, sort) end; + (* syntax *) @@ -578,15 +589,17 @@ (* simplified instantiation interface with no class parameter *) -fun instance_arity_cmd arities thy = +fun instance_arity_cmd raw_arities thy = let + val (tycos, vs, sort) = read_multi_arity thy raw_arities; + val sorts = map snd vs; + val arities = maps (fn tyco => Logic.mk_arities (tyco, sorts, sort)) tycos; fun after_qed results = ProofContext.theory ((fold o fold) AxClass.add_arity results); in thy |> ProofContext.init - |> Proof.theorem_i NONE after_qed ((map (fn t => [(t, [])]) - o Logic.mk_arities o Sign.read_arity thy) arities) + |> Proof.theorem_i NONE after_qed (map (fn t => [(t, [])]) arities) end; diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Pure/Isar/isar_syn.ML --- a/src/Pure/Isar/isar_syn.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Pure/Isar/isar_syn.ML Tue Jun 30 21:23:01 2009 +0200 @@ -465,7 +465,7 @@ val _ = OuterSyntax.command "instance" "prove type arity or subclass relation" K.thy_goal ((P.xname -- ((P.$$$ "\\" || P.$$$ "<") |-- P.!!! P.xname) >> Class.classrel_cmd || - P.arity >> Class.instance_arity_cmd) + P.multi_arity >> Class.instance_arity_cmd) >> (Toplevel.print oo Toplevel.theory_to_proof) || Scan.succeed (Toplevel.print o Toplevel.local_theory_to_proof NONE (Class.instantiation_instance I))); diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Pure/Isar/theory_target.ML --- a/src/Pure/Isar/theory_target.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Pure/Isar/theory_target.ML Tue Jun 30 21:23:01 2009 +0200 @@ -330,15 +330,6 @@ else I)} and init_lthy_ctxt ta = init_lthy ta o init_ctxt ta; -fun read_multi_arity thy (raw_tycos, raw_sorts, raw_sort) = - let - val all_arities = map (fn raw_tyco => Sign.read_arity thy - (raw_tyco, raw_sorts, raw_sort)) raw_tycos; - val tycos = map #1 all_arities; - val (_, sorts, sort) = hd all_arities; - val vs = Name.names Name.context Name.aT sorts; - in (tycos, vs, sort) end; - fun gen_overloading prep_const raw_ops thy = let val ctxt = ProofContext.init thy; @@ -356,7 +347,7 @@ fun instantiation arities = init_lthy_ctxt (make_target "" false false arities []); fun instantiation_cmd raw_arities thy = - instantiation (read_multi_arity thy raw_arities) thy; + instantiation (Class_Target.read_multi_arity thy raw_arities) thy; val overloading = gen_overloading (fn ctxt => Syntax.check_term ctxt o Const); val overloading_cmd = gen_overloading Syntax.read_term; diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Tools/Code/code_haskell.ML --- a/src/Tools/Code/code_haskell.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Tools/Code/code_haskell.ML Tue Jun 30 21:23:01 2009 +0200 @@ -25,10 +25,8 @@ fun pr_haskell_bind pr_term = let - fun pr_bind ((NONE, NONE), _) = str "_" - | pr_bind ((SOME v, NONE), _) = str v - | pr_bind ((NONE, SOME p), _) = p - | pr_bind ((SOME v, SOME p), _) = brackets [str v, str "@", p]; + fun pr_bind (NONE, _) = str "_" + | pr_bind (SOME p, _) = p; in gen_pr_bind pr_bind pr_term end; fun pr_haskell_stmt labelled_name syntax_class syntax_tyco syntax_const @@ -72,9 +70,8 @@ (str o Code_Printer.lookup_var vars) v | pr_term tyvars thm vars fxy (t as _ `|=> _) = let - val (binds, t') = Code_Thingol.unfold_abs t; - fun pr ((v, pat), ty) = pr_bind tyvars thm BR ((SOME v, pat), ty); - val (ps, vars') = fold_map pr binds vars; + val (binds, t') = Code_Thingol.unfold_pat_abs t; + val (ps, vars') = fold_map (pr_bind tyvars thm BR) binds vars; in brackets (str "\\" :: ps @ str "->" @@ pr_term tyvars thm vars' NOBR t') end | pr_term tyvars thm vars fxy (ICase (cases as (_, t0))) = (case Code_Thingol.unfold_const_app t0 @@ -103,7 +100,7 @@ val (binds, body) = Code_Thingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars - |> pr_bind tyvars thm BR ((NONE, SOME pat), ty) + |> pr_bind tyvars thm BR (SOME pat, ty) |>> (fn p => semicolon [p, str "=", pr_term tyvars thm vars NOBR t]) val (ps, vars') = fold_map pr binds vars; in brackify_block fxy (str "let {") @@ -114,7 +111,7 @@ let fun pr (pat, body) = let - val (p, vars') = pr_bind tyvars thm NOBR ((NONE, SOME pat), ty) vars; + val (p, vars') = pr_bind tyvars thm NOBR (SOME pat, ty) vars; in semicolon [p, str "->", pr_term tyvars thm vars' NOBR body] end; in brackify_block fxy (concat [str "case", pr_term tyvars thm vars NOBR t, str "of", str "{"]) @@ -240,8 +237,6 @@ end | pr_stmt (_, Code_Thingol.Classinst ((class, (tyco, vs)), (_, classparam_insts))) = let - val split_abs_pure = (fn (v, _) `|=> t => SOME (v, t) | _ => NONE); - val unfold_abs_pure = Code_Thingol.unfoldr split_abs_pure; val tyvars = Code_Printer.intro_vars (map fst vs) init_syms; fun pr_instdef ((classparam, c_inst), (thm, _)) = case syntax_const classparam of NONE => semicolon [ @@ -255,7 +250,7 @@ val const = if (is_some o syntax_const) c_inst_name then NONE else (SOME o Long_Name.base_name o deresolve) c_inst_name; val proto_rhs = Code_Thingol.eta_expand k (c_inst, []); - val (vs, rhs) = unfold_abs_pure proto_rhs; + val (vs, rhs) = (apfst o map) fst (Code_Thingol.unfold_abs proto_rhs); val vars = init_syms |> Code_Printer.intro_vars (the_list const) |> Code_Printer.intro_vars vs; @@ -447,16 +442,16 @@ fun pretty_haskell_monad c_bind = let - fun dest_bind t1 t2 = case Code_Thingol.split_abs t2 - of SOME (((v, pat), ty), t') => - SOME ((SOME (((SOME v, pat), ty), true), t1), t') + fun dest_bind t1 t2 = case Code_Thingol.split_pat_abs t2 + of SOME ((some_pat, ty), t') => + SOME ((SOME ((some_pat, ty), true), t1), t') | NONE => NONE; fun dest_monad c_bind_name (IConst (c, _) `$ t1 `$ t2) = if c = c_bind_name then dest_bind t1 t2 else NONE | dest_monad _ t = case Code_Thingol.split_let t of SOME (((pat, ty), tbind), t') => - SOME ((SOME (((NONE, SOME pat), ty), false), tbind), t') + SOME ((SOME ((SOME pat, ty), false), tbind), t') | NONE => NONE; fun implode_monad c_bind_name = Code_Thingol.unfoldr (dest_monad c_bind_name); fun pr_monad pr_bind pr (NONE, t) vars = diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Tools/Code/code_ml.ML --- a/src/Tools/Code/code_ml.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Tools/Code/code_ml.ML Tue Jun 30 21:23:01 2009 +0200 @@ -94,9 +94,9 @@ [pr_term is_closure thm vars NOBR t1, pr_term is_closure thm vars BR t2]) | pr_term is_closure thm vars fxy (t as _ `|=> _) = let - val (binds, t') = Code_Thingol.unfold_abs t; - fun pr ((v, pat), ty) = - pr_bind is_closure thm NOBR ((SOME v, pat), ty) + val (binds, t') = Code_Thingol.unfold_pat_abs t; + fun pr (some_pat, ty) = + pr_bind is_closure thm NOBR (some_pat, ty) #>> (fn p => concat [str "fn", p, str "=>"]); val (ps, vars') = fold_map pr binds vars; in brackets (ps @ [pr_term is_closure thm vars' NOBR t']) end @@ -122,17 +122,15 @@ :: (map (pr_dicts BR) o filter_out null) iss @ map (pr_term is_closure thm vars BR) ts and pr_app is_closure thm vars = gen_pr_app (pr_app' is_closure) (pr_term is_closure) syntax_const thm vars - and pr_bind' ((NONE, NONE), _) = str "_" - | pr_bind' ((SOME v, NONE), _) = str v - | pr_bind' ((NONE, SOME p), _) = p - | pr_bind' ((SOME v, SOME p), _) = concat [str v, str "as", p] + and pr_bind' (NONE, _) = str "_" + | pr_bind' (SOME p, _) = p and pr_bind is_closure = gen_pr_bind pr_bind' (pr_term is_closure) and pr_case is_closure thm vars fxy (cases as ((_, [_]), _)) = let val (binds, body) = Code_Thingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars - |> pr_bind is_closure thm NOBR ((NONE, SOME pat), ty) + |> pr_bind is_closure thm NOBR (SOME pat, ty) |>> (fn p => semicolon [str "val", p, str "=", pr_term is_closure thm vars NOBR t]) val (ps, vars') = fold_map pr binds vars; in @@ -146,7 +144,7 @@ let fun pr delim (pat, body) = let - val (p, vars') = pr_bind is_closure thm NOBR ((NONE, SOME pat), ty) vars; + val (p, vars') = pr_bind is_closure thm NOBR (SOME pat, ty) vars; in concat [str delim, p, str "=>", pr_term is_closure thm vars' NOBR body] end; @@ -403,9 +401,8 @@ brackify fxy [pr_term is_closure thm vars NOBR t1, pr_term is_closure thm vars BR t2]) | pr_term is_closure thm vars fxy (t as _ `|=> _) = let - val (binds, t') = Code_Thingol.unfold_abs t; - fun pr ((v, pat), ty) = pr_bind is_closure thm BR ((SOME v, pat), ty); - val (ps, vars') = fold_map pr binds vars; + val (binds, t') = Code_Thingol.unfold_pat_abs t; + val (ps, vars') = fold_map (pr_bind is_closure thm BR) binds vars; in brackets (str "fun" :: ps @ str "->" @@ pr_term is_closure thm vars' NOBR t') end | pr_term is_closure thm vars fxy (ICase (cases as (_, t0))) = (case Code_Thingol.unfold_const_app t0 of SOME (c_ts as ((c, _), _)) => if is_none (syntax_const c) @@ -427,17 +424,15 @@ :: ((map (pr_dicts BR) o filter_out null) iss @ map (pr_term is_closure thm vars BR) ts) and pr_app is_closure = gen_pr_app (pr_app' is_closure) (pr_term is_closure) syntax_const - and pr_bind' ((NONE, NONE), _) = str "_" - | pr_bind' ((SOME v, NONE), _) = str v - | pr_bind' ((NONE, SOME p), _) = p - | pr_bind' ((SOME v, SOME p), _) = brackets [p, str "as", str v] + and pr_bind' (NONE, _) = str "_" + | pr_bind' (SOME p, _) = p and pr_bind is_closure = gen_pr_bind pr_bind' (pr_term is_closure) and pr_case is_closure thm vars fxy (cases as ((_, [_]), _)) = let val (binds, body) = Code_Thingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars - |> pr_bind is_closure thm NOBR ((NONE, SOME pat), ty) + |> pr_bind is_closure thm NOBR (SOME pat, ty) |>> (fn p => concat [str "let", p, str "=", pr_term is_closure thm vars NOBR t, str "in"]) val (ps, vars') = fold_map pr binds vars; @@ -449,7 +444,7 @@ let fun pr delim (pat, body) = let - val (p, vars') = pr_bind is_closure thm NOBR ((NONE, SOME pat), ty) vars; + val (p, vars') = pr_bind is_closure thm NOBR (SOME pat, ty) vars; in concat [str delim, p, str "->", pr_term is_closure thm vars' NOBR body] end; in brackets ( diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Tools/Code/code_printer.ML --- a/src/Tools/Code/code_printer.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Tools/Code/code_printer.ML Tue Jun 30 21:23:01 2009 +0200 @@ -68,10 +68,10 @@ -> (thm -> var_ctxt -> fixity -> iterm -> Pretty.T) -> (string -> const_syntax option) -> thm -> var_ctxt -> fixity -> const * iterm list -> Pretty.T - val gen_pr_bind: ((string option * Pretty.T option) * itype -> Pretty.T) + val gen_pr_bind: (Pretty.T option * itype -> Pretty.T) -> (thm -> var_ctxt -> fixity -> iterm -> Pretty.T) -> thm -> fixity - -> (string option * iterm option) * itype -> var_ctxt -> Pretty.T * var_ctxt + -> iterm option * itype -> var_ctxt -> Pretty.T * var_ctxt val mk_name_module: Name.context -> string option -> (string -> string option) -> 'a Graph.T -> string -> string @@ -216,16 +216,14 @@ else pr_term thm vars fxy (Code_Thingol.eta_expand k app) end; -fun gen_pr_bind pr_bind pr_term thm (fxy : fixity) ((v, pat), ty : itype) vars = +fun gen_pr_bind pr_bind pr_term thm (fxy : fixity) (some_pat, ty : itype) vars = let - val vs = case pat + val vs = case some_pat of SOME pat => Code_Thingol.fold_varnames (insert (op =)) pat [] | NONE => []; - val vars' = intro_vars (the_list v) vars; - val vars'' = intro_vars vs vars'; - val v' = Option.map (lookup_var vars') v; - val pat' = Option.map (pr_term thm vars'' fxy) pat; - in (pr_bind ((v', pat'), ty), vars'') end; + val vars' = intro_vars vs vars; + val some_pat' = Option.map (pr_term thm vars' fxy) some_pat; + in (pr_bind (some_pat', ty), vars') end; (* mixfix syntax *) diff -r 53acb8ec6c51 -r 4a34d2a8a497 src/Tools/Code/code_thingol.ML --- a/src/Tools/Code/code_thingol.ML Tue Jun 30 21:19:32 2009 +0200 +++ b/src/Tools/Code/code_thingol.ML Tue Jun 30 21:23:01 2009 +0200 @@ -40,13 +40,12 @@ val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a val unfold_fun: itype -> itype list * itype val unfold_app: iterm -> iterm * iterm list - val split_abs: iterm -> (((vname * iterm option) * itype) * iterm) option - val unfold_abs: iterm -> ((vname * iterm option) * itype) list * iterm + val unfold_abs: iterm -> (vname * itype) list * iterm val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm + val split_pat_abs: iterm -> ((iterm option * itype) * iterm) option + val unfold_pat_abs: iterm -> (iterm option * itype) list * iterm val unfold_const_app: iterm -> (const * iterm list) option - val collapse_let: ((vname * itype) * iterm) * iterm - -> (iterm * itype) * (iterm * iterm) list val eta_expand: int -> const * iterm list -> iterm val contains_dictvar: iterm -> bool val locally_monomorphic: iterm -> bool @@ -139,14 +138,10 @@ (fn op `$ t => SOME t | _ => NONE); -val split_abs = - (fn (v, ty) `|=> (t as ICase (((IVar w, _), [(p, t')]), _)) => - if v = w then SOME (((v, SOME p), ty), t') else SOME (((v, NONE), ty), t) - | (v, ty) `|=> t => SOME (((v, NONE), ty), t) +val unfold_abs = unfoldr + (fn op `|=> t => SOME t | _ => NONE); -val unfold_abs = unfoldr split_abs; - val split_let = (fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t) | _ => NONE); @@ -186,17 +181,17 @@ | add vs (ICase (_, t)) = add vs t; in add [] end; -fun collapse_let (((v, ty), se), be as ICase (((IVar w, _), ds), _)) = - let - fun exists_v t = fold_unbound_varnames (fn w => fn b => - b orelse v = w) t false; - in if v = w andalso forall (fn (t1, t2) => - exists_v t1 orelse not (exists_v t2)) ds - then ((se, ty), ds) - else ((se, ty), [(IVar v, be)]) - end - | collapse_let (((v, ty), se), be) = - ((se, ty), [(IVar v, be)]) +fun exists_var t v = fold_unbound_varnames (fn w => fn b => v = w orelse b) t false; + +val split_pat_abs = (fn (v, ty) `|=> t => (case t + of ICase (((IVar w, _), [(p, t')]), _) => + if v = w andalso (exists_var p v orelse not (exists_var t' v)) + then SOME ((SOME p, ty), t') + else SOME ((SOME (IVar v), ty), t) + | _ => SOME ((if exists_var t v then SOME (IVar v) else NONE, ty), t)) + | _ => NONE); + +val unfold_pat_abs = unfoldr split_pat_abs; fun eta_expand k (c as (_, (_, tys)), ts) = let