# HG changeset patch # User wenzelm # Date 1446485425 -3600 # Node ID 53bb4172c7f7611956adbf2dae95c7daa47543fd # Parent 57000ac6291fecc69a030a19a8882b045312f6dd tuned whitespace; diff -r 57000ac6291f -r 53bb4172c7f7 src/HOL/Library/Lattice_Algebras.thy --- a/src/HOL/Library/Lattice_Algebras.thy Mon Nov 02 18:09:14 2015 +0100 +++ b/src/HOL/Library/Lattice_Algebras.thy Mon Nov 02 18:30:25 2015 +0100 @@ -1,4 +1,4 @@ -(* Author: Steven Obua, TU Muenchen *) +(* Author: Steven Obua, TU Muenchen *) section \Various algebraic structures combined with a lattice\ @@ -224,7 +224,7 @@ proof - from that have a: "inf (a + a) 0 = 0" by (simp add: inf_commute inf_absorb1) - have "inf a 0 + inf a 0 = inf (inf (a + a) 0) a" (is "?l=_") + have "inf a 0 + inf a 0 = inf (inf (a + a) 0) a" (is "?l = _") by (simp add: add_sup_inf_distribs inf_aci) then have "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute) @@ -619,4 +619,3 @@ qed end -