# HG changeset patch # User paulson # Date 1051863942 -7200 # Node ID 5433b2755e98229a08977f5cd19b0141323ba636 # Parent 9b34607cd83e40c234b3c49a98448afbfb9720d0 moved Bij.thy from HOL/GroupTheory diff -r 9b34607cd83e -r 5433b2755e98 src/HOL/Algebra/Bij.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Algebra/Bij.thy Fri May 02 10:25:42 2003 +0200 @@ -0,0 +1,148 @@ +(* Title: HOL/Algebra/Bij + ID: $Id$ + Author: Florian Kammueller, with new proofs by L C Paulson +*) + + +header{*Bijections of a Set, Permutation Groups, Automorphism Groups*} + +theory Bij = Group: + +constdefs + Bij :: "'a set => (('a => 'a)set)" + --{*Only extensional functions, since otherwise we get too many.*} + "Bij S == extensional S \ {f. f`S = S & inj_on f S}" + + BijGroup :: "'a set => (('a => 'a) monoid)" + "BijGroup S == (| carrier = Bij S, + mult = %g: Bij S. %f: Bij S. compose S g f, + one = %x: S. x |)" + + +declare Id_compose [simp] compose_Id [simp] + +lemma Bij_imp_extensional: "f \ Bij S ==> f \ extensional S" +by (simp add: Bij_def) + +lemma Bij_imp_funcset: "f \ Bij S ==> f \ S -> S" +by (auto simp add: Bij_def Pi_def) + +lemma Bij_imp_apply: "f \ Bij S ==> f ` S = S" +by (simp add: Bij_def) + +lemma Bij_imp_inj_on: "f \ Bij S ==> inj_on f S" +by (simp add: Bij_def) + +lemma BijI: "[| f \ extensional(S); f`S = S; inj_on f S |] ==> f \ Bij S" +by (simp add: Bij_def) + + +subsection{*Bijections Form a Group*} + +lemma restrict_Inv_Bij: "f \ Bij S ==> (%x:S. (Inv S f) x) \ Bij S" +apply (simp add: Bij_def) +apply (intro conjI) +txt{*Proving @{term "restrict (Inv S f) S ` S = S"}*} + apply (rule equalityI) + apply (force simp add: Inv_mem) --{*first inclusion*} + apply (rule subsetI) --{*second inclusion*} + apply (rule_tac x = "f x" in image_eqI) + apply (force intro: simp add: Inv_f_f, blast) +txt{*Remaining goal: @{term "inj_on (restrict (Inv S f) S) S"}*} +apply (rule inj_onI) +apply (auto elim: Inv_injective) +done + +lemma id_Bij: "(\x\S. x) \ Bij S " +apply (rule BijI) +apply (auto simp add: inj_on_def) +done + +lemma compose_Bij: "[| x \ Bij S; y \ Bij S|] ==> compose S x y \ Bij S" +apply (rule BijI) + apply (simp add: compose_extensional) + apply (blast del: equalityI + intro: surj_compose dest: Bij_imp_apply Bij_imp_inj_on) +apply (blast intro: inj_on_compose dest: Bij_imp_apply Bij_imp_inj_on) +done + +lemma Bij_compose_restrict_eq: + "f \ Bij S ==> compose S (restrict (Inv S f) S) f = (\x\S. x)" +apply (rule compose_Inv_id) + apply (simp add: Bij_imp_inj_on) +apply (simp add: Bij_imp_apply) +done + +theorem group_BijGroup: "group (BijGroup S)" +apply (simp add: BijGroup_def) +apply (rule groupI) + apply (simp add: compose_Bij) + apply (simp add: id_Bij) + apply (simp add: compose_Bij) + apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset) + apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp) +apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij) +done + + +subsection{*Automorphisms Form a Group*} + +lemma Bij_Inv_mem: "[| f \ Bij S; x : S |] ==> Inv S f x : S" +by (simp add: Bij_def Inv_mem) + +lemma Bij_Inv_lemma: + assumes eq: "!!x y. [|x \ S; y \ S|] ==> h(g x y) = g (h x) (h y)" + shows "[| h \ Bij S; g \ S \ S \ S; x \ S; y \ S |] + ==> Inv S h (g x y) = g (Inv S h x) (Inv S h y)" +apply (simp add: Bij_def) +apply (subgoal_tac "EX x':S. EX y':S. x = h x' & y = h y'", clarify) + apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem], blast) +done + +constdefs + auto :: "('a,'b) monoid_scheme => ('a => 'a)set" + "auto G == hom G G \ Bij (carrier G)" + + AutoGroup :: "[('a,'c) monoid_scheme] => ('a=>'a) monoid" + "AutoGroup G == BijGroup (carrier G) (|carrier := auto G |)" + +lemma id_in_auto: "group G ==> (%x: carrier G. x) \ auto G" + by (simp add: auto_def hom_def restrictI group.axioms id_Bij) + +lemma mult_funcset: "group G ==> mult G \ carrier G -> carrier G -> carrier G" + by (simp add: Pi_I group.axioms) + +lemma restrict_Inv_hom: + "[|group G; h \ hom G G; h \ Bij (carrier G)|] + ==> restrict (Inv (carrier G) h) (carrier G) \ hom G G" + by (simp add: hom_def Bij_Inv_mem restrictI mult_funcset + group.axioms Bij_Inv_lemma) + +lemma inv_BijGroup: + "f \ Bij S ==> m_inv (BijGroup S) f = (%x: S. (Inv S f) x)" +apply (rule group.inv_equality) +apply (rule group_BijGroup) +apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq) +done + +lemma subgroup_auto: + "group G ==> subgroup (auto G) (BijGroup (carrier G))" +apply (rule group.subgroupI) + apply (rule group_BijGroup) + apply (force simp add: auto_def BijGroup_def) + apply (blast intro: dest: id_in_auto) + apply (simp del: restrict_apply + add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom) +apply (simp add: BijGroup_def auto_def Bij_imp_funcset compose_hom compose_Bij) +done + +theorem AutoGroup: "group G ==> group (AutoGroup G)" +apply (simp add: AutoGroup_def) +apply (rule Group.subgroup.groupI) +apply (erule subgroup_auto) +apply (insert Bij.group_BijGroup [of "carrier G"]) +apply (simp_all add: group_def) +done + +end +