# HG changeset patch # User wenzelm # Date 1251476310 -7200 # Node ID 54758ca53fd6f16951032fe1b54d45baa79da01f # Parent 700ed1f4c576f4ef5bac9968287e73046b8e4835 modernized messages -- eliminated old Display.print_cterm; diff -r 700ed1f4c576 -r 54758ca53fd6 src/HOL/Nominal/nominal_thmdecls.ML --- a/src/HOL/Nominal/nominal_thmdecls.ML Fri Aug 28 17:07:15 2009 +0200 +++ b/src/HOL/Nominal/nominal_thmdecls.ML Fri Aug 28 18:18:30 2009 +0200 @@ -74,7 +74,7 @@ val lhs = Const (@{const_name "perm"}, typi --> HOLogic.boolT --> HOLogic.boolT) $ pi' $ hyp; val ([goal_term, pi''], ctxt') = Variable.import_terms false [HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, concl)), pi'] ctxt - val _ = Display.print_cterm (cterm_of thy goal_term) + val _ = writeln (Syntax.string_of_term ctxt' goal_term); in Goal.prove ctxt' [] [] goal_term (fn _ => prove_eqvt_tac thy orig_thm pi' pi'') |> diff -r 700ed1f4c576 -r 54758ca53fd6 src/HOL/Tools/Qelim/cooper.ML --- a/src/HOL/Tools/Qelim/cooper.ML Fri Aug 28 17:07:15 2009 +0200 +++ b/src/HOL/Tools/Qelim/cooper.ML Fri Aug 28 18:18:30 2009 +0200 @@ -29,30 +29,30 @@ val bT = HOLogic.boolT; val dest_numeral = HOLogic.dest_number #> snd; -val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = +val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"}; -val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = +val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"}; -val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = +val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"}; val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP]; val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP; -val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, +val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, asetgt, asetge, asetdvd, asetndvd,asetP], - [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, + [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]] = [@{thms "aset"}, @{thms "bset"}]; -val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, +val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, @{thm "plusinfinity"}, @{thm "cppi"}]; val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"}; -val [zdvd_mono,simp_from_to,all_not_ex] = +val [zdvd_mono,simp_from_to,all_not_ex] = [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}]; val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"}; @@ -62,49 +62,49 @@ (* recognising cterm without moving to terms *) -datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm +datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox -fun whatis x ct = -( case (term_of ct) of +fun whatis x ct = +( case (term_of ct) of Const("op &",_)$_$_ => And (Thm.dest_binop ct) | Const ("op |",_)$_$_ => Or (Thm.dest_binop ct) | Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox -| Const (@{const_name Not},_) $ (Const ("op =",_)$y$_) => +| Const (@{const_name Not},_) $ (Const ("op =",_)$y$_) => if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox | Const (@{const_name HOL.less}, _) $ y$ z => - if term_of x aconv y then Lt (Thm.dest_arg ct) + if term_of x aconv y then Lt (Thm.dest_arg ct) else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox -| Const (@{const_name HOL.less_eq}, _) $ y $ z => - if term_of x aconv y then Le (Thm.dest_arg ct) +| Const (@{const_name HOL.less_eq}, _) $ y $ z => + if term_of x aconv y then Le (Thm.dest_arg ct) else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox | Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$y$_) => - if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox + if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox | Const (@{const_name Not},_) $ (Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name "HOL.plus"},_)$y$_)) => - if term_of x aconv y then - NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox + if term_of x aconv y then + NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox | _ => Nox) - handle CTERM _ => Nox; + handle CTERM _ => Nox; -fun get_pmi_term t = - let val (x,eq) = +fun get_pmi_term t = + let val (x,eq) = (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg) (Thm.dest_arg t) in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end; val get_pmi = get_pmi_term o cprop_of; -val p_v' = @{cpat "?P' :: int => bool"}; +val p_v' = @{cpat "?P' :: int => bool"}; val q_v' = @{cpat "?Q' :: int => bool"}; val p_v = @{cpat "?P:: int => bool"}; val q_v = @{cpat "?Q:: int => bool"}; -fun myfwd (th1, th2, th3) p q - [(th_1,th_2,th_3), (th_1',th_2',th_3')] = - let +fun myfwd (th1, th2, th3) p q + [(th_1,th_2,th_3), (th_1',th_2',th_3')] = + let val (mp', mq') = (get_pmi th_1, get_pmi th_1') - val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) + val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) [th_1, th_1'] val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3'] val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2'] @@ -123,15 +123,15 @@ val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg] val [zero, one] = [@{term "0 :: int"}, @{term "1 :: int"}]; -val is_numeral = can dest_numeral; +val is_numeral = can dest_numeral; -fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); +fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n)); -val [minus1,plus1] = +val [minus1,plus1] = map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd]; -fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, +fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, asetgt, asetge,asetdvd,asetndvd,asetP, infDdvd, infDndvd, asetconj, asetdisj, infDconj, infDdisj] cp = @@ -144,11 +144,11 @@ | Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse)) | Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue)) | Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue)) -| Dvd (d,s) => +| Dvd (d,s) => ([],let val dd = dvd d - in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end) + in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end) | NDvd(d,s) => ([],let val dd = dvd d - in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) + in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) | _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP)); fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt, @@ -165,82 +165,82 @@ | Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse)) | Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse)) | Dvd (d,s) => ([],let val dd = dvd d - in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end) + in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end) | NDvd (d,s) => ([],let val dd = dvd d - in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) + in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) | _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP)) (* Canonical linear form for terms, formulae etc.. *) -fun provelin ctxt t = Goal.prove ctxt [] [] t +fun provelin ctxt t = Goal.prove ctxt [] [] t (fn _ => EVERY [simp_tac lin_ss 1, TRY (Lin_Arith.tac ctxt 1)]); -fun linear_cmul 0 tm = zero - | linear_cmul n tm = case tm of +fun linear_cmul 0 tm = zero + | linear_cmul n tm = case tm of Const (@{const_name HOL.plus}, _) $ a $ b => addC $ linear_cmul n a $ linear_cmul n b | Const (@{const_name HOL.times}, _) $ c $ x => mulC $ numeral1 (fn m => n * m) c $ x | Const (@{const_name HOL.minus}, _) $ a $ b => subC $ linear_cmul n a $ linear_cmul n b | (m as Const (@{const_name HOL.uminus}, _)) $ a => m $ linear_cmul n a | _ => numeral1 (fn m => n * m) tm; -fun earlier [] x y = false - | earlier (h::t) x y = - if h aconv y then false else if h aconv x then true else earlier t x y; +fun earlier [] x y = false + | earlier (h::t) x y = + if h aconv y then false else if h aconv x then true else earlier t x y; -fun linear_add vars tm1 tm2 = case (tm1, tm2) of +fun linear_add vars tm1 tm2 = case (tm1, tm2) of (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) => - if x1 = x2 then + if x1 = x2 then let val c = numeral2 (curry op +) c1 c2 in if c = zero then linear_add vars r1 r2 else addC$(mulC$c$x1)$(linear_add vars r1 r2) - end + end else if earlier vars x1 x2 then addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2 else addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2 | (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1, _) => addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2 - | (_, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) => + | (_, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) => addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2 | (_, _) => numeral2 (curry op +) tm1 tm2; - -fun linear_neg tm = linear_cmul ~1 tm; -fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); + +fun linear_neg tm = linear_cmul ~1 tm; +fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); -fun lint vars tm = if is_numeral tm then tm else case tm of +fun lint vars tm = if is_numeral tm then tm else case tm of Const (@{const_name HOL.uminus}, _) $ t => linear_neg (lint vars t) | Const (@{const_name HOL.plus}, _) $ s $ t => linear_add vars (lint vars s) (lint vars t) | Const (@{const_name HOL.minus}, _) $ s $ t => linear_sub vars (lint vars s) (lint vars t) | Const (@{const_name HOL.times}, _) $ s $ t => - let val s' = lint vars s - val t' = lint vars t - in if is_numeral s' then (linear_cmul (dest_numeral s') t') - else if is_numeral t' then (linear_cmul (dest_numeral t') s') + let val s' = lint vars s + val t' = lint vars t + in if is_numeral s' then (linear_cmul (dest_numeral s') t') + else if is_numeral t' then (linear_cmul (dest_numeral t') s') else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm])) - end + end | _ => addC $ (mulC $ one $ tm) $ zero; -fun lin (vs as x::_) (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.less}, T) $ s $ t)) = +fun lin (vs as x::_) (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.less}, T) $ s $ t)) = lin vs (Const (@{const_name HOL.less_eq}, T) $ t $ s) - | lin (vs as x::_) (Const (@{const_name Not},_) $ (Const(@{const_name HOL.less_eq}, T) $ s $ t)) = + | lin (vs as x::_) (Const (@{const_name Not},_) $ (Const(@{const_name HOL.less_eq}, T) $ s $ t)) = lin vs (Const (@{const_name HOL.less}, T) $ t $ s) | lin vs (Const (@{const_name Not},T)$t) = Const (@{const_name Not},T)$ (lin vs t) - | lin (vs as x::_) (Const(@{const_name Ring_and_Field.dvd},_)$d$t) = + | lin (vs as x::_) (Const(@{const_name Ring_and_Field.dvd},_)$d$t) = HOLogic.mk_binrel @{const_name Ring_and_Field.dvd} (numeral1 abs d, lint vs t) - | lin (vs as x::_) ((b as Const("op =",_))$s$t) = - (case lint vs (subC$t$s) of - (t as a$(m$c$y)$r) => + | lin (vs as x::_) ((b as Const("op =",_))$s$t) = + (case lint vs (subC$t$s) of + (t as a$(m$c$y)$r) => if x <> y then b$zero$t else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(m$c$y)$(linear_neg r) | t => b$zero$t) - | lin (vs as x::_) (b$s$t) = - (case lint vs (subC$t$s) of - (t as a$(m$c$y)$r) => + | lin (vs as x::_) (b$s$t) = + (case lint vs (subC$t$s) of + (t as a$(m$c$y)$r) => if x <> y then b$zero$t else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(linear_neg r)$(m$c$y) | t => b$zero$t) | lin vs fm = fm; -fun lint_conv ctxt vs ct = +fun lint_conv ctxt vs ct = let val t = term_of ct in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop)) RS eq_reflection @@ -251,26 +251,26 @@ fun is_intrel (b$_$_) = is_intrel_type (fastype_of b) | is_intrel (@{term "Not"}$(b$_$_)) = is_intrel_type (fastype_of b) | is_intrel _ = false; - + fun linearize_conv ctxt vs ct = case term_of ct of - Const(@{const_name Ring_and_Field.dvd},_)$d$t => - let + Const(@{const_name Ring_and_Field.dvd},_)$d$t => + let val th = binop_conv (lint_conv ctxt vs) ct val (d',t') = Thm.dest_binop (Thm.rhs_of th) val (dt',tt') = (term_of d', term_of t') - in if is_numeral dt' andalso is_numeral tt' + in if is_numeral dt' andalso is_numeral tt' then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th - else - let - val dth = - ((if dest_numeral (term_of d') < 0 then + else + let + val dth = + ((if dest_numeral (term_of d') < 0 then Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs))) (Thm.transitive th (inst' [d',t'] dvd_uminus)) else th) handle TERM _ => th) val d'' = Thm.rhs_of dth |> Thm.dest_arg1 in - case tt' of - Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$_)$_ => + case tt' of + Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$_)$_ => let val x = dest_numeral c in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs))) (Thm.transitive dth (inst' [d'',t'] dvd_uminus')) @@ -279,29 +279,29 @@ end end | Const (@{const_name Not},_)$(Const(@{const_name Ring_and_Field.dvd},_)$_$_) => arg_conv (linearize_conv ctxt vs) ct -| t => if is_intrel t +| t => if is_intrel t then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop)) RS eq_reflection else reflexive ct; val dvdc = @{cterm "op dvd :: int => _"}; -fun unify ctxt q = +fun unify ctxt q = let val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE - val x = term_of cx + val x = term_of cx val ins = insert (op = : int * int -> bool) - fun h (acc,dacc) t = + fun h (acc,dacc) t = case (term_of t) of - Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => + Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => if x aconv y andalso member (op =) ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s then (ins (dest_numeral c) acc,dacc) else (acc,dacc) - | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => + | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => if x aconv y andalso member (op =) - [@{const_name HOL.less}, @{const_name HOL.less_eq}] s + [@{const_name HOL.less}, @{const_name HOL.less_eq}] s then (ins (dest_numeral c) acc, dacc) else (acc,dacc) - | Const(@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_) => + | Const(@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_) => if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc) | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t) | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t) @@ -309,51 +309,53 @@ | _ => (acc, dacc) val (cs,ds) = h ([],[]) p val l = Integer.lcms (cs union ds) - fun cv k ct = - let val (tm as b$s$t) = term_of ct + fun cv k ct = + let val (tm as b$s$t) = term_of ct in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t)) |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end - fun nzprop x = - let - val th = - Simplifier.rewrite lin_ss - (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} - (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (Numeral.mk_cnumber @{ctyp "int"} x)) + fun nzprop x = + let + val th = + Simplifier.rewrite lin_ss + (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} + (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (Numeral.mk_cnumber @{ctyp "int"} x)) @{cterm "0::int"}))) in equal_elim (Thm.symmetric th) TrueI end; - val notz = let val tab = fold Inttab.update - (ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty - in - (fn ct => (valOf (Inttab.lookup tab (ct |> term_of |> dest_numeral)) - handle Option => (writeln "noz: Theorems-Table contains no entry for"; - Display.print_cterm ct ; raise Option))) - end - fun unit_conv t = + val notz = + let val tab = fold Inttab.update + (ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty + in + fn ct => valOf (Inttab.lookup tab (ct |> term_of |> dest_numeral)) + handle Option => + (writeln ("noz: Theorems-Table contains no entry for " ^ + Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option) + end + fun unit_conv t = case (term_of t) of Const("op &",_)$_$_ => binop_conv unit_conv t | Const("op |",_)$_$_ => binop_conv unit_conv t | Const (@{const_name Not},_)$_ => arg_conv unit_conv t - | Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => + | Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => if x=y andalso member (op =) ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s then cv (l div dest_numeral c) t else Thm.reflexive t - | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => + | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => if x=y andalso member (op =) [@{const_name HOL.less}, @{const_name HOL.less_eq}] s then cv (l div dest_numeral c) t else Thm.reflexive t - | Const(@{const_name Ring_and_Field.dvd},_)$d$(r as (Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_)) => - if x=y then - let + | Const(@{const_name Ring_and_Field.dvd},_)$d$(r as (Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_)) => + if x=y then + let val k = l div dest_numeral c val kt = HOLogic.mk_number iT k - val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] + val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono) val (d',t') = (mulC$kt$d, mulC$kt$r) val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop)) RS eq_reflection val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop)) RS eq_reflection - in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end + in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end else Thm.reflexive t | _ => Thm.reflexive t val uth = unit_conv p @@ -361,7 +363,7 @@ val ltx = Thm.capply (Thm.capply cmulC clt) cx val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth) val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex - val thf = transitive th + val thf = transitive th (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th') val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true ||> beta_conversion true |>> Thm.symmetric @@ -374,25 +376,25 @@ fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS; val cTrp = @{cterm "Trueprop"}; val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1; -val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg +val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg) [asetP,bsetP]; val D_tm = @{cpat "?D::int"}; -fun cooperex_conv ctxt vs q = -let +fun cooperex_conv ctxt vs q = +let val uth = unify ctxt q val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth)) val ins = insert (op aconvc) - fun h t (bacc,aacc,dacc) = + fun h t (bacc,aacc,dacc) = case (whatis x t) of And (p,q) => h q (h p (bacc,aacc,dacc)) | Or (p,q) => h q (h p (bacc,aacc,dacc)) - | Eq t => (ins (minus1 t) bacc, + | Eq t => (ins (minus1 t) bacc, ins (plus1 t) aacc,dacc) - | NEq t => (ins t bacc, + | NEq t => (ins t bacc, ins t aacc, dacc) | Lt t => (bacc, ins t aacc, dacc) | Le t => (bacc, ins (plus1 t) aacc,dacc) @@ -405,89 +407,92 @@ val d = Integer.lcms ds val cd = Numeral.mk_cnumber @{ctyp "int"} d val dt = term_of cd - fun divprop x = - let - val th = - Simplifier.rewrite lin_ss - (Thm.capply @{cterm Trueprop} + fun divprop x = + let + val th = + Simplifier.rewrite lin_ss + (Thm.capply @{cterm Trueprop} (Thm.capply (Thm.capply dvdc (Numeral.mk_cnumber @{ctyp "int"} x)) cd)) in equal_elim (Thm.symmetric th) TrueI end; - val dvd = let val tab = fold Inttab.update - (ds ~~ (map divprop ds)) Inttab.empty in - (fn ct => (valOf (Inttab.lookup tab (term_of ct |> dest_numeral)) - handle Option => (writeln "dvd: Theorems-Table contains no entry for"; - Display.print_cterm ct ; raise Option))) - end - val dp = - let val th = Simplifier.rewrite lin_ss - (Thm.capply @{cterm Trueprop} + val dvd = + let val tab = fold Inttab.update (ds ~~ (map divprop ds)) Inttab.empty in + fn ct => valOf (Inttab.lookup tab (term_of ct |> dest_numeral)) + handle Option => + (writeln ("dvd: Theorems-Table contains no entry for" ^ + Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option) + end + val dp = + let val th = Simplifier.rewrite lin_ss + (Thm.capply @{cterm Trueprop} (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd)) in equal_elim (Thm.symmetric th) TrueI end; (* A and B set *) - local + local val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"} val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"} in - fun provein x S = + fun provein x S = case term_of S of Const(@{const_name Orderings.bot}, _) => error "Unexpected error in Cooper, please email Amine Chaieb" - | Const(@{const_name insert}, _) $ y $ _ => + | Const(@{const_name insert}, _) $ y $ _ => let val (cy,S') = Thm.dest_binop S in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1 - else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) + else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) (provein x S') end end - + val al = map (lint vs o term_of) a0 val bl = map (lint vs o term_of) b0 - val (sl,s0,f,abths,cpth) = - if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) - then + val (sl,s0,f,abths,cpth) = + if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) + then (bl,b0,decomp_minf, - fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) + fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@ - (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) + (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj, bsetdisj,infDconj, infDdisj]), - cpmi) - else (al,a0,decomp_pinf,fn A => + cpmi) + else (al,a0,decomp_pinf,fn A => (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp) [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@ - (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) + (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj, asetdisj,infDconj, infDdisj]),cppi) - val cpth = + val cpth = let - val sths = map (fn (tl,t0) => - if tl = term_of t0 + val sths = map (fn (tl,t0) => + if tl = term_of t0 then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl - else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) - |> HOLogic.mk_Trueprop)) + else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) + |> HOLogic.mk_Trueprop)) (sl ~~ s0) val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths) val S = mkISet csl - val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) + val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) csl Termtab.empty val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp - val inS = - let - fun transmem th0 th1 = - Thm.equal_elim - (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule + val inS = + let + fun transmem th0 th1 = + Thm.equal_elim + (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1 val tab = fold Termtab.update - (map (fn eq => - let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop - val th = if term_of s = term_of t + (map (fn eq => + let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop + val th = if term_of s = term_of t then valOf(Termtab.lookup inStab (term_of s)) - else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) + else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) [eq, valOf(Termtab.lookup inStab (term_of s))] in (term_of t, th) end) sths) Termtab.empty - in fn ct => - (valOf (Termtab.lookup tab (term_of ct)) - handle Option => (writeln "inS: No theorem for " ; Display.print_cterm ct ; raise Option)) + in + fn ct => valOf (Termtab.lookup tab (term_of ct)) + handle Option => + (writeln ("inS: No theorem for " ^ Syntax.string_of_term ctxt (Thm.term_of ct)); + raise Option) end val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p in [dp, inf, nb, pd] MRS cpth @@ -496,9 +501,9 @@ in Thm.transitive cpth' ((simp_thms_conv ctxt then_conv eval_conv) (Thm.rhs_of cpth')) end; -fun literals_conv bops uops env cv = +fun literals_conv bops uops env cv = let fun h t = - case (term_of t) of + case (term_of t) of b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t | _ => cv env t @@ -508,21 +513,21 @@ nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt); local - val pcv = Simplifier.rewrite - (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) + val pcv = Simplifier.rewrite + (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) @ [not_all,all_not_ex, ex_disj_distrib])) val postcv = Simplifier.rewrite presburger_ss - fun conv ctxt p = + fun conv ctxt p = let val _ = () in - Qelim.gen_qelim_conv pcv postcv pcv (cons o term_of) - (OldTerm.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) - (cooperex_conv ctxt) p + Qelim.gen_qelim_conv pcv postcv pcv (cons o term_of) + (OldTerm.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) + (cooperex_conv ctxt) p end handle CTERM s => raise COOPER ("Cooper Failed", CTERM s) - | THM s => raise COOPER ("Cooper Failed", THM s) - | TYPE s => raise COOPER ("Cooper Failed", TYPE s) -in val cooper_conv = conv + | THM s => raise COOPER ("Cooper Failed", THM s) + | TYPE s => raise COOPER ("Cooper Failed", TYPE s) +in val cooper_conv = conv end; end; @@ -544,12 +549,12 @@ | Const(@{const_name HOL.uminus},_)$t' => Neg (i_of_term vs t') | Const(@{const_name HOL.plus},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2) | Const(@{const_name HOL.minus},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2) - | Const(@{const_name HOL.times},_)$t1$t2 => + | Const(@{const_name HOL.times},_)$t1$t2 => (Mul (HOLogic.dest_number t1 |> snd, i_of_term vs t2) - handle TERM _ => + handle TERM _ => (Mul (HOLogic.dest_number t2 |> snd, i_of_term vs t1) handle TERM _ => cooper "Reification: Unsupported kind of multiplication")) - | _ => (C (HOLogic.dest_number t |> snd) + | _ => (C (HOLogic.dest_number t |> snd) handle TERM _ => cooper "Reification: unknown term"); fun qf_of_term ps vs t = case t @@ -557,7 +562,7 @@ | Const("False",_) => F | Const(@{const_name HOL.less},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2)) | Const(@{const_name HOL.less_eq},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2)) - | Const(@{const_name Ring_and_Field.dvd},_)$t1$t2 => + | Const(@{const_name Ring_and_Field.dvd},_)$t1$t2 => (Dvd(HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd") (* FIXME avoid handle _ *) | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2)) | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2) @@ -565,42 +570,42 @@ | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const (@{const_name Not},_)$t' => Not(qf_of_term ps vs t') - | Const("Ex",_)$Abs(xn,xT,p) => + | Const("Ex",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) in E (qf_of_term ps vs' p') end - | Const("All",_)$Abs(xn,xT,p) => + | Const("All",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) in A (qf_of_term ps vs' p') end - | _ =>(case AList.lookup (op aconv) ps t of + | _ =>(case AList.lookup (op aconv) ps t of NONE => cooper "Reification: unknown term!" | SOME n => Closed n); local val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"}, - @{term "op = :: int => _"}, @{term "op < :: int => _"}, - @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, + @{term "op = :: int => _"}, @{term "op < :: int => _"}, + @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}] fun ty t = Bool.not (fastype_of t = HOLogic.boolT) in fun term_bools acc t = -case t of - (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b +case t of + (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b else insert (op aconv) t acc - | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a + | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a else insert (op aconv) t acc | Abs p => term_bools acc (snd (variant_abs p)) | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc end; - + fun myassoc2 l v = case l of - [] => NONE + [] => NONE | (x,v')::xs => if v = v' then SOME x - else myassoc2 xs v; + else myassoc2 xs v; fun term_of_i vs t = case t of C i => HOLogic.mk_number HOLogic.intT i @@ -612,9 +617,9 @@ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t2 | Cn (n, i, t') => term_of_i vs (Add (Mul (i, Bound n), t')); -fun term_of_qf ps vs t = - case t of - T => HOLogic.true_const +fun term_of_qf ps vs t = + case t of + T => HOLogic.true_const | F => HOLogic.false_const | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"} @@ -622,7 +627,7 @@ | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} | NEq t' => term_of_qf ps vs (Not (Eq t')) - | Dvd(i,t') => @{term "op dvd :: int => _ "} $ + | Dvd(i,t') => @{term "op dvd :: int => _ "} $ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t' | NDvd(i,t')=> term_of_qf ps vs (Not(Dvd(i,t'))) | Not t' => HOLogic.Not$(term_of_qf ps vs t') diff -r 700ed1f4c576 -r 54758ca53fd6 src/HOL/Tools/TFL/rules.ML --- a/src/HOL/Tools/TFL/rules.ML Fri Aug 28 17:07:15 2009 +0200 +++ b/src/HOL/Tools/TFL/rules.ML Fri Aug 28 18:18:30 2009 +0200 @@ -544,7 +544,7 @@ (*--------------------------------------------------------------------------- * Trace information for the rewriter *---------------------------------------------------------------------------*) -val term_ref = ref[] : term list ref +val term_ref = ref [] : term list ref val ss_ref = ref [] : simpset list ref; val thm_ref = ref [] : thm list ref; val tracing = ref false; @@ -554,8 +554,8 @@ fun print_thms s L = say (cat_lines (s :: map Display.string_of_thm_without_context L)); -fun print_cterms s L = - say (cat_lines (s :: map Display.string_of_cterm L)); +fun print_cterm s ct = + say (cat_lines [s, Syntax.string_of_term_global (Thm.theory_of_cterm ct) (Thm.term_of ct)]); (*--------------------------------------------------------------------------- @@ -683,7 +683,7 @@ (* Unquantified eliminate *) fun uq_eliminate (thm,imp,thy) = let val tych = cterm_of thy - val dummy = print_cterms "To eliminate:" [tych imp] + val dummy = print_cterm "To eliminate:" (tych imp) val ants = map tych (Logic.strip_imp_prems imp) val eq = Logic.strip_imp_concl imp val lhs = tych(get_lhs eq) @@ -781,9 +781,8 @@ val antl = case rcontext of [] => [] | _ => [S.list_mk_conj(map cncl rcontext)] val TC = genl(S.list_mk_imp(antl, A)) - val dummy = print_cterms "func:" [cterm_of thy func] - val dummy = print_cterms "TC:" - [cterm_of thy (HOLogic.mk_Trueprop TC)] + val dummy = print_cterm "func:" (cterm_of thy func) + val dummy = print_cterm "TC:" (cterm_of thy (HOLogic.mk_Trueprop TC)) val dummy = tc_list := (TC :: !tc_list) val nestedp = isSome (S.find_term is_func TC) val dummy = if nestedp then say "nested" else say "not_nested"