# HG changeset patch # User wenzelm # Date 995830297 -7200 # Node ID 54b23680167196c764135674043b899a014f7ee0 # Parent e389e4338604851da073396ecb7ba531a474e6fe replaced SOME by THE; diff -r e389e4338604 -r 54b236801671 src/HOL/Lattice/CompleteLattice.thy --- a/src/HOL/Lattice/CompleteLattice.thy Sun Jul 22 21:31:00 2001 +0200 +++ b/src/HOL/Lattice/CompleteLattice.thy Sun Jul 22 21:31:37 2001 +0200 @@ -38,8 +38,8 @@ Meet :: "'a::complete_lattice set \ 'a" ("\_" [90] 90) Join :: "'a::complete_lattice set \ 'a" ("\_" [90] 90) defs - Meet_def: "\A \ SOME inf. is_Inf A inf" - Join_def: "\A \ SOME sup. is_Sup A sup" + Meet_def: "\A \ THE inf. is_Inf A inf" + Join_def: "\A \ THE sup. is_Sup A sup" text {* Due to unique existence of bounds, the complete lattice operations @@ -49,8 +49,8 @@ lemma Meet_equality [elim?]: "is_Inf A inf \ \A = inf" proof (unfold Meet_def) assume "is_Inf A inf" - thus "(SOME inf. is_Inf A inf) = inf" - by (rule some_equality) (rule is_Inf_uniq) + thus "(THE inf. is_Inf A inf) = inf" + by (rule the_equality) (rule is_Inf_uniq) qed lemma MeetI [intro?]: @@ -62,8 +62,8 @@ lemma Join_equality [elim?]: "is_Sup A sup \ \A = sup" proof (unfold Join_def) assume "is_Sup A sup" - thus "(SOME sup. is_Sup A sup) = sup" - by (rule some_equality) (rule is_Sup_uniq) + thus "(THE sup. is_Sup A sup) = sup" + by (rule the_equality) (rule is_Sup_uniq) qed lemma JoinI [intro?]: @@ -80,8 +80,8 @@ lemma is_Inf_Meet [intro?]: "is_Inf A (\A)" proof (unfold Meet_def) - from ex_Inf - show "is_Inf A (SOME inf. is_Inf A inf)" .. + from ex_Inf obtain inf where "is_Inf A inf" .. + thus "is_Inf A (THE inf. is_Inf A inf)" by (rule theI) (rule is_Inf_uniq) qed lemma Meet_greatest [intro?]: "(\a. a \ A \ x \ a) \ x \ \A" @@ -93,8 +93,8 @@ lemma is_Sup_Join [intro?]: "is_Sup A (\A)" proof (unfold Join_def) - from ex_Sup - show "is_Sup A (SOME sup. is_Sup A sup)" .. + from ex_Sup obtain sup where "is_Sup A sup" .. + thus "is_Sup A (THE sup. is_Sup A sup)" by (rule theI) (rule is_Sup_uniq) qed lemma Join_least [intro?]: "(\a. a \ A \ a \ x) \ \A \ x" diff -r e389e4338604 -r 54b236801671 src/HOL/Lattice/Lattice.thy --- a/src/HOL/Lattice/Lattice.thy Sun Jul 22 21:31:00 2001 +0200 +++ b/src/HOL/Lattice/Lattice.thy Sun Jul 22 21:31:37 2001 +0200 @@ -31,8 +31,8 @@ meet :: "'a::lattice \ 'a \ 'a" (infixl "\" 70) join :: "'a::lattice \ 'a \ 'a" (infixl "\" 65) defs - meet_def: "x && y \ SOME inf. is_inf x y inf" - join_def: "x || y \ SOME sup. is_sup x y sup" + meet_def: "x && y \ THE inf. is_inf x y inf" + join_def: "x || y \ THE sup. is_sup x y sup" text {* Due to unique existence of bounds, the lattice operations may be @@ -42,8 +42,8 @@ lemma meet_equality [elim?]: "is_inf x y inf \ x \ y = inf" proof (unfold meet_def) assume "is_inf x y inf" - thus "(SOME inf. is_inf x y inf) = inf" - by (rule some_equality) (rule is_inf_uniq) + thus "(THE inf. is_inf x y inf) = inf" + by (rule the_equality) (rule is_inf_uniq) qed lemma meetI [intro?]: @@ -53,8 +53,8 @@ lemma join_equality [elim?]: "is_sup x y sup \ x \ y = sup" proof (unfold join_def) assume "is_sup x y sup" - thus "(SOME sup. is_sup x y sup) = sup" - by (rule some_equality) (rule is_sup_uniq) + thus "(THE sup. is_sup x y sup) = sup" + by (rule the_equality) (rule is_sup_uniq) qed lemma joinI [intro?]: "x \ sup \ y \ sup \ @@ -69,8 +69,8 @@ lemma is_inf_meet [intro?]: "is_inf x y (x \ y)" proof (unfold meet_def) - from ex_inf - show "is_inf x y (SOME inf. is_inf x y inf)" .. + from ex_inf obtain inf where "is_inf x y inf" .. + thus "is_inf x y (THE inf. is_inf x y inf)" by (rule theI) (rule is_inf_uniq) qed lemma meet_greatest [intro?]: "z \ x \ z \ y \ z \ x \ y" @@ -85,8 +85,8 @@ lemma is_sup_join [intro?]: "is_sup x y (x \ y)" proof (unfold join_def) - from ex_sup - show "is_sup x y (SOME sup. is_sup x y sup)" .. + from ex_sup obtain sup where "is_sup x y sup" .. + thus "is_sup x y (THE sup. is_sup x y sup)" by (rule theI) (rule is_sup_uniq) qed lemma join_least [intro?]: "x \ z \ y \ z \ x \ y \ z"