# HG changeset patch # User wenzelm # Date 1294846384 -3600 # Node ID 54b4686704af8bca09adecb51c0433e90b068858 # Parent a42cbf5b44c82fe5941a6c92b6cacf3c0daa9d5e eliminated global prems; diff -r a42cbf5b44c8 -r 54b4686704af src/CCL/Set.thy --- a/src/CCL/Set.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CCL/Set.thy Wed Jan 12 16:33:04 2011 +0100 @@ -222,7 +222,7 @@ proof - have "\ (EX x. x:A) \ A = {}" by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+ - with prems show ?thesis by blast + with assms show ?thesis by blast qed diff -r a42cbf5b44c8 -r 54b4686704af src/CCL/Type.thy --- a/src/CCL/Type.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CCL/Type.thy Wed Jan 12 16:33:04 2011 +0100 @@ -214,7 +214,7 @@ subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *} -lemma NatM: "mono(%X. Unit+X)"; +lemma NatM: "mono(%X. Unit+X)" apply (rule PlusM constM idM)+ done @@ -358,7 +358,7 @@ shows "t(a) : gfp(B)" apply (rule coinduct) apply (rule_tac P = "%x. EX y:A. x=t (y)" in CollectI) - apply (blast intro!: prems)+ + apply (blast intro!: assms)+ done lemma def_gfpI: diff -r a42cbf5b44c8 -r 54b4686704af src/CCL/Wfd.thy --- a/src/CCL/Wfd.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CCL/Wfd.thy Wed Jan 12 16:33:04 2011 +0100 @@ -253,11 +253,11 @@ shows "letrec g x y be h(x,y,g) in g(a,b) : D(a,b)" apply (unfold letrec2_def) apply (rule SPLITB [THEN subst]) - apply (assumption | rule letrecT pairT splitT prems)+ + apply (assumption | rule letrecT pairT splitT assms)+ apply (subst SPLITB) - apply (assumption | rule ballI SubtypeI prems)+ + apply (assumption | rule ballI SubtypeI assms)+ apply (rule SPLITB [THEN subst]) - apply (assumption | rule letrecT SubtypeI pairT splitT prems | + apply (assumption | rule letrecT SubtypeI pairT splitT assms | erule bspec SubtypeE sym [THEN subst])+ done @@ -275,11 +275,11 @@ shows "letrec g x y z be h(x,y,z,g) in g(a,b,c) : D(a,b,c)" apply (unfold letrec3_def) apply (rule lem [THEN subst]) - apply (assumption | rule letrecT pairT splitT prems)+ + apply (assumption | rule letrecT pairT splitT assms)+ apply (simp add: SPLITB) - apply (assumption | rule ballI SubtypeI prems)+ + apply (assumption | rule ballI SubtypeI assms)+ apply (rule lem [THEN subst]) - apply (assumption | rule letrecT SubtypeI pairT splitT prems | + apply (assumption | rule letrecT SubtypeI pairT splitT assms | erule bspec SubtypeE sym [THEN subst])+ done @@ -520,7 +520,7 @@ assumes "f ---> lam x. b(x)" and "b(a) ---> c" shows "f ` a ---> c" - unfolding apply_def by (eval prems) + unfolding apply_def by (eval assms) lemma letV: assumes 1: "t ---> a" diff -r a42cbf5b44c8 -r 54b4686704af src/CCL/ex/Stream.thy --- a/src/CCL/ex/Stream.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CCL/ex/Stream.thy Wed Jan 12 16:33:04 2011 +0100 @@ -63,7 +63,7 @@ shows "map(f,l@m) = map(f,l) @ map(f,m)" apply (tactic {* eq_coinduct3_tac @{context} "{p. EX x y. p= & (EX l:Lists (A). EX m:Lists (A). x=map (f,l@m) & y=map (f,l) @ map (f,m))}" 1 *}) - apply (blast intro: prems) + apply (blast intro: assms) apply safe apply (drule ListsXH [THEN iffD1]) apply (tactic "EQgen_tac @{context} [] 1") @@ -82,7 +82,7 @@ shows "k @ l @ m = (k @ l) @ m" apply (tactic {* eq_coinduct3_tac @{context} "{p. EX x y. p= & (EX k:Lists (A). EX l:Lists (A). EX m:Lists (A). x=k @ l @ m & y= (k @ l) @ m) }" 1*}) - apply (blast intro: prems) + apply (blast intro: assms) apply safe apply (drule ListsXH [THEN iffD1]) apply (tactic "EQgen_tac @{context} [] 1") @@ -100,7 +100,7 @@ shows "l @ m = l" apply (tactic {* eq_coinduct3_tac @{context} "{p. EX x y. p= & (EX l:ILists (A) .EX m. x=l@m & y=l)}" 1 *}) - apply (blast intro: prems) + apply (blast intro: assms) apply safe apply (drule IListsXH [THEN iffD1]) apply (tactic "EQgen_tac @{context} [] 1") diff -r a42cbf5b44c8 -r 54b4686704af src/CTT/CTT.thy --- a/src/CTT/CTT.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CTT/CTT.thy Wed Jan 12 16:33:04 2011 +0100 @@ -319,7 +319,7 @@ and "a: A" and "!!z. z: B(a) ==> c(z): C(z)" shows "c(p`a): C(p`a)" -apply (rule prems ProdE)+ +apply (rule assms ProdE)+ done diff -r a42cbf5b44c8 -r 54b4686704af src/CTT/ex/Elimination.thy --- a/src/CTT/ex/Elimination.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/CTT/ex/Elimination.thy Wed Jan 12 16:33:04 2011 +0100 @@ -145,7 +145,7 @@ apply (rule subst_eqtyparg) apply (rule comp_rls) apply (rule_tac [4] SumE_snd) -apply (tactic {* typechk_tac (@{thm SumE_fst} :: @{thms prems}) *}) +apply (tactic {* typechk_tac (@{thm SumE_fst} :: @{thms assms}) *}) done text "Axiom of choice. Proof without fst, snd. Harder still!" diff -r a42cbf5b44c8 -r 54b4686704af src/Cube/Cube.thy --- a/src/Cube/Cube.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/Cube/Cube.thy Wed Jan 12 16:33:04 2011 +0100 @@ -76,11 +76,11 @@ lemma imp_elim: assumes "f:A->B" and "a:A" and "f^a:B ==> PROP P" - shows "PROP P" by (rule app prems)+ + shows "PROP P" by (rule app assms)+ lemma pi_elim: assumes "F:Prod(A,B)" and "a:A" and "F^a:B(a) ==> PROP P" - shows "PROP P" by (rule app prems)+ + shows "PROP P" by (rule app assms)+ locale L2 = diff -r a42cbf5b44c8 -r 54b4686704af src/FOL/ex/Intro.thy --- a/src/FOL/ex/Intro.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/FOL/ex/Intro.thy Wed Jan 12 16:33:04 2011 +0100 @@ -76,7 +76,7 @@ shows "~ P" apply (unfold not_def) apply (rule impI) -apply (rule prems) +apply (rule assms) apply assumption done diff -r a42cbf5b44c8 -r 54b4686704af src/FOLP/ex/Foundation.thy --- a/src/FOLP/ex/Foundation.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/FOLP/ex/Foundation.thy Wed Jan 12 16:33:04 2011 +0100 @@ -23,17 +23,17 @@ assumes "p : A & B" and "!!x y. x : A ==> y : B ==> f(x, y) : C" shows "?p : C" -apply (rule prems) +apply (rule assms) apply (rule conjunct1) -apply (rule prems) +apply (rule assms) apply (rule conjunct2) -apply (rule prems) +apply (rule assms) done schematic_lemma assumes "!!A x. x : ~ ~A ==> cla(x) : A" shows "?p : B | ~B" -apply (rule prems) +apply (rule assms) apply (rule notI) apply (rule_tac P = "~B" in notE) apply (rule_tac [2] notI) @@ -51,7 +51,7 @@ schematic_lemma assumes "!!A x. x : ~ ~A ==> cla(x) : A" shows "?p : B | ~B" -apply (rule prems) +apply (rule assms) apply (rule notI) apply (rule notE) apply (rule_tac [2] notI) @@ -68,11 +68,11 @@ and "q : ~ ~A" shows "?p : A" apply (rule disjE) -apply (rule prems) +apply (rule assms) apply assumption apply (rule FalseE) apply (rule_tac P = "~A" in notE) -apply (rule prems) +apply (rule assms) apply assumption done @@ -84,7 +84,7 @@ shows "?p : ALL z. G(z)|H(z)" apply (rule allI) apply (rule disjI1) -apply (rule prems [THEN spec]) +apply (rule assms [THEN spec]) done schematic_lemma "?p : ALL x. EX y. x=y" @@ -112,7 +112,7 @@ assumes "p : (EX z. F(z)) & B" shows "?p : EX z. F(z) & B" apply (rule conjE) -apply (rule prems) +apply (rule assms) apply (rule exE) apply assumption apply (rule exI) diff -r a42cbf5b44c8 -r 54b4686704af src/FOLP/ex/Intro.thy --- a/src/FOLP/ex/Intro.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/FOLP/ex/Intro.thy Wed Jan 12 16:33:04 2011 +0100 @@ -76,7 +76,7 @@ shows "?p : ~ P" apply (unfold not_def) apply (rule impI) -apply (rule prems) +apply (rule assms) apply assumption done diff -r a42cbf5b44c8 -r 54b4686704af src/ZF/Induct/Tree_Forest.thy --- a/src/ZF/Induct/Tree_Forest.thy Wed Jan 12 15:53:37 2011 +0100 +++ b/src/ZF/Induct/Tree_Forest.thy Wed Jan 12 16:33:04 2011 +0100 @@ -176,7 +176,7 @@ assumes "!!x. x \ A ==> h(x): B" shows map_tree_type: "t \ tree(A) ==> map(h,t) \ tree(B)" and map_forest_type: "f \ forest(A) ==> map(h,f) \ forest(B)" - using prems + using assms by (induct rule: tree'induct forest'induct) simp_all text {*