# HG changeset patch # User wenzelm # Date 1616365460 -3600 # Node ID 552a9dd5b4a249cafe04004ad7ef4f1f60b00360 # Parent 8995cab6b7a6aa3bcc0e61158f070135fac7f442 prefer isabelle bbbfont; diff -r 8995cab6b7a6 -r 552a9dd5b4a2 src/HOL/Matrix_LP/Matrix.thy --- a/src/HOL/Matrix_LP/Matrix.thy Sun Mar 21 23:16:34 2021 +0100 +++ b/src/HOL/Matrix_LP/Matrix.thy Sun Mar 21 23:24:20 2021 +0100 @@ -282,8 +282,8 @@ by (simp add: combine_matrix_def commutative_def combine_infmatrix_def) text\ -On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$, -as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have +On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\bbbZ$, $B=\{-1, 0, 1\}$, +as $f$ we take addition on $\bbbZ$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have \[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \] but on the other hand we have \[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\] diff -r 8995cab6b7a6 -r 552a9dd5b4a2 src/HOL/Matrix_LP/document/root.tex --- a/src/HOL/Matrix_LP/document/root.tex Sun Mar 21 23:16:34 2021 +0100 +++ b/src/HOL/Matrix_LP/document/root.tex Sun Mar 21 23:24:20 2021 +0100 @@ -9,8 +9,6 @@ \urlstyle{rm} \isabellestyle{it} -\newcommand{\ganz}{\mathsf{Z}\mkern-7.5mu\mathsf{Z}} - \begin{document} \title{Matrix} diff -r 8995cab6b7a6 -r 552a9dd5b4a2 src/HOL/ZF/document/root.tex --- a/src/HOL/ZF/document/root.tex Sun Mar 21 23:16:34 2021 +0100 +++ b/src/HOL/ZF/document/root.tex Sun Mar 21 23:24:20 2021 +0100 @@ -8,8 +8,6 @@ \urlstyle{rm} \isabellestyle{it} -\newcommand{\ganz}{\mathsf{Z}\mkern-7.5mu\mathsf{Z}} - \begin{document} \title{ZF}