# HG changeset patch # User haftmann # Date 1255088434 -7200 # Node ID 5564af2d0588a46882f0a3d6a78c8a9c41b56947 # Parent dc883c6126d4474d3e924cef3294d2ab0d291c4c simplified proof diff -r dc883c6126d4 -r 5564af2d0588 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Fri Oct 09 13:34:40 2009 +0200 +++ b/src/HOL/Transitive_Closure.thy Fri Oct 09 13:40:34 2009 +0200 @@ -77,7 +77,7 @@ subsection {* Reflexive-transitive closure *} lemma reflcl_set_eq [pred_set_conv]: "(sup (\x y. (x, y) \ r) op =) = (\x y. (x, y) \ r \ Id)" - by (simp add: mem_def pair_in_Id_conv [simplified mem_def] sup_fun_eq sup_bool_eq) + by (auto simp add: expand_fun_eq) lemma r_into_rtrancl [intro]: "!!p. p \ r ==> p \ r^*" -- {* @{text rtrancl} of @{text r} contains @{text r} *}