# HG changeset patch # User nipkow # Date 1604404638 -3600 # Node ID 55a50f65c928f4246f4a7a0db1b8d3fa98aa2c97 # Parent 15aa84226a5766779bfd29065c71881a2aca2cf2 added lemma diff -r 15aa84226a57 -r 55a50f65c928 src/HOL/Groups_List.thy --- a/src/HOL/Groups_List.thy Tue Nov 03 11:09:22 2020 +0100 +++ b/src/HOL/Groups_List.thy Tue Nov 03 12:57:18 2020 +0100 @@ -301,6 +301,10 @@ finally show ?thesis by(simp add:sum_list_map_eq_sum_count) qed +lemma sum_list_replicate: "sum_list (replicate n c) = of_nat n * c" +by(induction n)(auto simp add: distrib_right) + + lemma sum_list_nonneg: "(\x. x \ set xs \ (x :: 'a :: ordered_comm_monoid_add) \ 0) \ sum_list xs \ 0" by (induction xs) simp_all