# HG changeset patch # User wenzelm # Date 980517724 -3600 # Node ID 55c0f9a8df78119ed51beadd5c0942a1c2357ede # Parent 8d37c8befbe66db1be6650ee6e12819830e7132e renamed to Transitive_Closure_lemmas.ML; diff -r 8d37c8befbe6 -r 55c0f9a8df78 src/HOL/Transitive_Closure.ML --- a/src/HOL/Transitive_Closure.ML Fri Jan 26 00:19:50 2001 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,402 +0,0 @@ -(* Title: HOL/Transitive_Closure - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1992 University of Cambridge - -Theorems about the transitive closure of a relation -*) - -(** The relation rtrancl **) - -section "^*"; - -Goal "mono(%s. Id Un (r O s))"; -by (rtac monoI 1); -by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1)); -qed "rtrancl_fun_mono"; - -bind_thm ("rtrancl_unfold", rtrancl_fun_mono RS (rtrancl_def RS def_lfp_unfold)); - -(*Reflexivity of rtrancl*) -Goal "(a,a) : r^*"; -by (stac rtrancl_unfold 1); -by (Blast_tac 1); -qed "rtrancl_refl"; - -Addsimps [rtrancl_refl]; -AddSIs [rtrancl_refl]; - - -(*Closure under composition with r*) -Goal "[| (a,b) : r^*; (b,c) : r |] ==> (a,c) : r^*"; -by (stac rtrancl_unfold 1); -by (Blast_tac 1); -qed "rtrancl_into_rtrancl"; - -(*rtrancl of r contains r*) -Goal "!!p. p : r ==> p : r^*"; -by (split_all_tac 1); -by (etac (rtrancl_refl RS rtrancl_into_rtrancl) 1); -qed "r_into_rtrancl"; - -AddIs [r_into_rtrancl]; - -(*monotonicity of rtrancl*) -Goalw [rtrancl_def] "r <= s ==> r^* <= s^*"; -by (REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1)); -qed "rtrancl_mono"; - -(** standard induction rule **) - -val major::prems = Goal - "[| (a,b) : r^*; \ -\ !!x. P(x,x); \ -\ !!x y z.[| P(x,y); (x,y): r^*; (y,z): r |] ==> P(x,z) |] \ -\ ==> P(a,b)"; -by (rtac ([rtrancl_def, rtrancl_fun_mono, major] MRS def_lfp_induct) 1); -by (blast_tac (claset() addIs prems) 1); -qed "rtrancl_full_induct"; - -(*nice induction rule*) -val major::prems = Goal - "[| (a::'a,b) : r^*; \ -\ P(a); \ -\ !!y z.[| (a,y) : r^*; (y,z) : r; P(y) |] ==> P(z) |] \ -\ ==> P(b)"; -(*by induction on this formula*) -by (subgoal_tac "! y. (a::'a,b) = (a,y) --> P(y)" 1); -(*now solve first subgoal: this formula is sufficient*) -by (Blast_tac 1); -(*now do the induction*) -by (resolve_tac [major RS rtrancl_full_induct] 1); -by (blast_tac (claset() addIs prems) 1); -by (blast_tac (claset() addIs prems) 1); -qed "rtrancl_induct"; - -bind_thm ("rtrancl_induct2", split_rule - (read_instantiate [("a","(ax,ay)"), ("b","(bx,by)")] rtrancl_induct)); - -(*transitivity of transitive closure!! -- by induction.*) -Goalw [trans_def] "trans(r^*)"; -by Safe_tac; -by (eres_inst_tac [("b","z")] rtrancl_induct 1); -by (ALLGOALS(blast_tac (claset() addIs [rtrancl_into_rtrancl]))); -qed "trans_rtrancl"; - -bind_thm ("rtrancl_trans", trans_rtrancl RS transD); - - -(*elimination of rtrancl -- by induction on a special formula*) -val major::prems = Goal - "[| (a::'a,b) : r^*; (a = b) ==> P; \ -\ !!y.[| (a,y) : r^*; (y,b) : r |] ==> P \ -\ |] ==> P"; -by (subgoal_tac "(a::'a) = b | (? y. (a,y) : r^* & (y,b) : r)" 1); -by (rtac (major RS rtrancl_induct) 2); -by (blast_tac (claset() addIs prems) 2); -by (blast_tac (claset() addIs prems) 2); -by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1)); -qed "rtranclE"; - -bind_thm ("rtrancl_into_rtrancl2", r_into_rtrancl RS rtrancl_trans); - -(*** More r^* equations and inclusions ***) - -Goal "(r^*)^* = r^*"; -by Auto_tac; -by (etac rtrancl_induct 1); -by (rtac rtrancl_refl 1); -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "rtrancl_idemp"; -Addsimps [rtrancl_idemp]; - -Goal "R^* O R^* = R^*"; -by (rtac set_ext 1); -by (split_all_tac 1); -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "rtrancl_idemp_self_comp"; -Addsimps [rtrancl_idemp_self_comp]; - -Goal "r <= s^* ==> r^* <= s^*"; -by (dtac rtrancl_mono 1); -by (Asm_full_simp_tac 1); -qed "rtrancl_subset_rtrancl"; - -Goal "[| R <= S; S <= R^* |] ==> S^* = R^*"; -by (dtac rtrancl_mono 1); -by (dtac rtrancl_mono 1); -by (Asm_full_simp_tac 1); -by (Blast_tac 1); -qed "rtrancl_subset"; - -Goal "(R^* Un S^*)^* = (R Un S)^*"; -by (blast_tac (claset() addSIs [rtrancl_subset] - addIs [r_into_rtrancl, rtrancl_mono RS subsetD]) 1); -qed "rtrancl_Un_rtrancl"; - -Goal "(R^=)^* = R^*"; -by (blast_tac (claset() addSIs [rtrancl_subset] addIs [r_into_rtrancl]) 1); -qed "rtrancl_reflcl"; -Addsimps [rtrancl_reflcl]; - -Goal "(r - Id)^* = r^*"; -by (rtac sym 1); -by (rtac rtrancl_subset 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (rename_tac "a b" 1); -by (case_tac "a=b" 1); - by (Blast_tac 1); -by (blast_tac (claset() addSIs [r_into_rtrancl]) 1); -qed "rtrancl_r_diff_Id"; - -Goal "(x,y) : (r^-1)^* ==> (y,x) : r^*"; -by (etac rtrancl_induct 1); -by (rtac rtrancl_refl 1); -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "rtrancl_converseD"; - -Goal "(y,x) : r^* ==> (x,y) : (r^-1)^*"; -by (etac rtrancl_induct 1); -by (rtac rtrancl_refl 1); -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "rtrancl_converseI"; - -Goal "(r^-1)^* = (r^*)^-1"; -(*blast_tac fails: the split_all_tac wrapper must be called to convert - the set element to a pair*) -by (safe_tac (claset() addSDs [rtrancl_converseD] addSIs [rtrancl_converseI])); -qed "rtrancl_converse"; - -val major::prems = Goal - "[| (a,b) : r^*; P(b); \ -\ !!y z.[| (y,z) : r; (z,b) : r^*; P(z) |] ==> P(y) |] \ -\ ==> P(a)"; -by (rtac (major RS rtrancl_converseI RS rtrancl_induct) 1); -by (resolve_tac prems 1); -by (blast_tac (claset() addIs prems addSDs[rtrancl_converseD])1); -qed "converse_rtrancl_induct"; - -bind_thm ("converse_rtrancl_induct2", split_rule - (read_instantiate [("a","(ax,ay)"),("b","(bx,by)")]converse_rtrancl_induct)); - -val major::prems = Goal - "[| (x,z):r^*; \ -\ x=z ==> P; \ -\ !!y. [| (x,y):r; (y,z):r^* |] ==> P \ -\ |] ==> P"; -by (subgoal_tac "x = z | (? y. (x,y) : r & (y,z) : r^*)" 1); -by (rtac (major RS converse_rtrancl_induct) 2); -by (blast_tac (claset() addIs prems) 2); -by (blast_tac (claset() addIs prems) 2); -by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1)); -qed "converse_rtranclE"; - -bind_thm ("converse_rtranclE2", split_rule - (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] converse_rtranclE)); - -Goal "r O r^* = r^* O r"; -by (blast_tac (claset() addEs [rtranclE, converse_rtranclE] - addIs [rtrancl_into_rtrancl, rtrancl_into_rtrancl2]) 1); -qed "r_comp_rtrancl_eq"; - - -(**** The relation trancl ****) - -section "^+"; - -Goalw [trancl_def] "[| p:r^+; r <= s |] ==> p:s^+"; -by (blast_tac (claset() addIs [rtrancl_mono RS subsetD]) 1); -qed "trancl_mono"; - -(** Conversions between trancl and rtrancl **) - -Goalw [trancl_def] - "!!p. p : r^+ ==> p : r^*"; -by (split_all_tac 1); -by (etac compEpair 1); -by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1)); -qed "trancl_into_rtrancl"; - -(*r^+ contains r*) -Goalw [trancl_def] - "!!p. p : r ==> p : r^+"; -by (split_all_tac 1); -by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1)); -qed "r_into_trancl"; -AddIs [r_into_trancl]; - -(*intro rule by definition: from rtrancl and r*) -Goalw [trancl_def] "[| (a,b) : r^*; (b,c) : r |] ==> (a,c) : r^+"; -by Auto_tac; -qed "rtrancl_into_trancl1"; - -(*intro rule from r and rtrancl*) -Goal "[| (a,b) : r; (b,c) : r^* |] ==> (a,c) : r^+"; -by (etac rtranclE 1); -by (blast_tac (claset() addIs [r_into_trancl]) 1); -by (rtac (rtrancl_trans RS rtrancl_into_trancl1) 1); -by (REPEAT (ares_tac [r_into_rtrancl] 1)); -qed "rtrancl_into_trancl2"; - -(*Nice induction rule for trancl*) -val major::prems = Goal - "[| (a,b) : r^+; \ -\ !!y. [| (a,y) : r |] ==> P(y); \ -\ !!y z.[| (a,y) : r^+; (y,z) : r; P(y) |] ==> P(z) \ -\ |] ==> P(b)"; -by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); -(*by induction on this formula*) -by (subgoal_tac "ALL z. (y,z) : r --> P(z)" 1); -(*now solve first subgoal: this formula is sufficient*) -by (Blast_tac 1); -by (etac rtrancl_induct 1); -by (ALLGOALS (blast_tac (claset() addIs (rtrancl_into_trancl1::prems)))); -qed "trancl_induct"; - -(*Another induction rule for trancl, incorporating transitivity.*) -val major::prems = Goal - "[| (x,y) : r^+; \ -\ !!x y. (x,y) : r ==> P x y; \ -\ !!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z \ -\ |] ==> P x y"; -by (blast_tac (claset() addIs ([r_into_trancl,major RS trancl_induct]@prems))1); -qed "trancl_trans_induct"; - -(*elimination of r^+ -- NOT an induction rule*) -val major::prems = Goal - "[| (a::'a,b) : r^+; \ -\ (a,b) : r ==> P; \ -\ !!y.[| (a,y) : r^+; (y,b) : r |] ==> P \ -\ |] ==> P"; -by (subgoal_tac "(a::'a,b) : r | (? y. (a,y) : r^+ & (y,b) : r)" 1); -by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1)); -by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); -by (etac rtranclE 1); -by (Blast_tac 1); -by (blast_tac (claset() addSIs [rtrancl_into_trancl1]) 1); -qed "tranclE"; - -(*Transitivity of r^+. - Proved by unfolding since it uses transitivity of rtrancl. *) -Goalw [trancl_def] "trans(r^+)"; -by (rtac transI 1); -by (REPEAT (etac compEpair 1)); -by (rtac (rtrancl_into_rtrancl RS (rtrancl_trans RS compI)) 1); -by (REPEAT (assume_tac 1)); -qed "trans_trancl"; - -bind_thm ("trancl_trans", trans_trancl RS transD); - -Goalw [trancl_def] "[| (x,y):r^*; (y,z):r^+ |] ==> (x,z):r^+"; -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "rtrancl_trancl_trancl"; - -(* "[| (a,b) : r; (b,c) : r^+ |] ==> (a,c) : r^+" *) -bind_thm ("trancl_into_trancl2", [trans_trancl, r_into_trancl] MRS transD); - -(* primitive recursion for trancl over finite relations: *) -Goal "(insert (y,x) r)^+ = r^+ Un {(a,b). (a,y):r^* & (x,b):r^*}"; -by (rtac equalityI 1); - by (rtac subsetI 1); - by (split_all_tac 1); - by (etac trancl_induct 1); - by (blast_tac (claset() addIs [r_into_trancl]) 1); - by (blast_tac (claset() addIs - [rtrancl_into_trancl1,trancl_into_rtrancl,r_into_trancl,trancl_trans]) 1); -by (rtac subsetI 1); -by (blast_tac (claset() addIs - [rtrancl_into_trancl2, rtrancl_trancl_trancl, - impOfSubs rtrancl_mono, trancl_mono]) 1); -qed "trancl_insert"; - -Goalw [trancl_def] "(r^-1)^+ = (r^+)^-1"; -by (simp_tac (simpset() addsimps [rtrancl_converse,converse_comp]) 1); -by (simp_tac (simpset() addsimps [rtrancl_converse RS sym, - r_comp_rtrancl_eq]) 1); -qed "trancl_converse"; - -Goal "(x,y) : (r^+)^-1 ==> (x,y) : (r^-1)^+"; -by (asm_full_simp_tac (simpset() addsimps [trancl_converse]) 1); -qed "trancl_converseI"; - -Goal "(x,y) : (r^-1)^+ ==> (x,y) : (r^+)^-1"; -by (asm_full_simp_tac (simpset() addsimps [trancl_converse]) 1); -qed "trancl_converseD"; - -val major::prems = Goal - "[| (a,b) : r^+; !!y. (y,b) : r ==> P(y); \ -\ !!y z.[| (y,z) : r; (z,b) : r^+; P(z) |] ==> P(y) |] \ -\ ==> P(a)"; -by (rtac ((major RS converseI RS trancl_converseI) RS trancl_induct) 1); - by (resolve_tac prems 1); - by (etac converseD 1); -by (blast_tac (claset() addIs prems addSDs [trancl_converseD])1); -qed "converse_trancl_induct"; - -Goal "(x,y):R^+ ==> ? z. (x,z):R & (z,y):R^*"; -be converse_trancl_induct 1; -by Auto_tac; -by (blast_tac (claset() addIs [rtrancl_trans]) 1); -qed "tranclD"; - -(*Unused*) -Goal "r^-1 Int r^+ = {} ==> (x, x) ~: r^+"; -by (subgoal_tac "!y. (x, y) : r^+ --> x~=y" 1); -by (Fast_tac 1); -by (strip_tac 1); -by (etac trancl_induct 1); -by (auto_tac (claset() addIs [r_into_trancl], simpset())); -qed "irrefl_tranclI"; - -Goal "!!X. [| !x. (x, x) ~: r^+; (x,y) : r |] ==> x ~= y"; -by (blast_tac (claset() addDs [r_into_trancl]) 1); -qed "irrefl_trancl_rD"; - -Goal "[| (a,b) : r^*; r <= A <*> A |] ==> a=b | a:A"; -by (etac rtrancl_induct 1); -by Auto_tac; -val lemma = result(); - -Goalw [trancl_def] "r <= A <*> A ==> r^+ <= A <*> A"; -by (blast_tac (claset() addSDs [lemma]) 1); -qed "trancl_subset_Sigma"; - - -Goal "(r^+)^= = r^*"; -by Safe_tac; -by (etac trancl_into_rtrancl 1); -by (blast_tac (claset() addEs [rtranclE] addDs [rtrancl_into_trancl1]) 1); -qed "reflcl_trancl"; -Addsimps[reflcl_trancl]; - -Goal "(r^=)^+ = r^*"; -by Safe_tac; -by (dtac trancl_into_rtrancl 1); -by (Asm_full_simp_tac 1); -by (etac rtranclE 1); -by Safe_tac; -by (rtac r_into_trancl 1); -by (Simp_tac 1); -by (rtac rtrancl_into_trancl1 1); -by (etac (rtrancl_reflcl RS equalityD2 RS subsetD) 1); -by (Fast_tac 1); -qed "trancl_reflcl"; -Addsimps[trancl_reflcl]; - -Goal "{}^+ = {}"; -by (auto_tac (claset() addEs [trancl_induct], simpset())); -qed "trancl_empty"; -Addsimps[trancl_empty]; - -Goal "{}^* = Id"; -by (rtac (reflcl_trancl RS subst) 1); -by (Simp_tac 1); -qed "rtrancl_empty"; -Addsimps[rtrancl_empty]; - -Goal "(a,b):R^* ==> a=b | a~=b & (a,b):R^+"; -by(force_tac (claset(), simpset() addsimps [reflcl_trancl RS sym] - delsimps [reflcl_trancl]) 1); -qed "rtranclD"; -