# HG changeset patch # User huffman # Date 1166297025 -3600 # Node ID 55cc354fd2d9e4816f3e317d5230c00df97882e2 # Parent 2ecfd8985982e02a086021a3a611d909c52d8aeb moved several theorems; rearranged theory dependencies diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/HyperDef.thy --- a/src/HOL/Hyperreal/HyperDef.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/HyperDef.thy Sat Dec 16 20:23:45 2006 +0100 @@ -8,7 +8,8 @@ header{*Construction of Hyperreals Using Ultrafilters*} theory HyperDef -imports StarClasses "../Real/Real" +imports HyperNat "../Real/Real" +uses ("hypreal_arith.ML") begin types hypreal = "real star" @@ -17,6 +18,10 @@ hypreal_of_real :: "real => real star" where "hypreal_of_real == star_of" +abbreviation + hypreal_of_hypnat :: "hypnat \ hypreal" where + "hypreal_of_hypnat \ of_hypnat" + definition omega :: hypreal where -- {*an infinite number @{text "= [<1,2,3,...>]"} *} @@ -236,4 +241,269 @@ lemma hypreal_epsilon_gt_zero: "0 < epsilon" by (simp add: hypreal_epsilon_inverse_omega) +subsection{*Absolute Value Function for the Hyperreals*} + +lemma hrabs_add_less: + "[| abs x < r; abs y < s |] ==> abs(x+y) < r + (s::hypreal)" +by (simp add: abs_if split: split_if_asm) + +lemma hrabs_less_gt_zero: "abs x < r ==> (0::hypreal) < r" +by (blast intro!: order_le_less_trans abs_ge_zero) + +lemma hrabs_disj: "abs x = (x::'a::abs_if) | abs x = -x" +by (simp add: abs_if) + +lemma hrabs_add_lemma_disj: "(y::hypreal) + - x + (y + - z) = abs (x + - z) ==> y = z | x = y" +by (simp add: abs_if split add: split_if_asm) + + +subsection{*Embedding the Naturals into the Hyperreals*} + +abbreviation + hypreal_of_nat :: "nat => hypreal" where + "hypreal_of_nat == of_nat" + +lemma SNat_eq: "Nats = {n. \N. n = hypreal_of_nat N}" +by (simp add: Nats_def image_def) + +(*------------------------------------------------------------*) +(* naturals embedded in hyperreals *) +(* is a hyperreal c.f. NS extension *) +(*------------------------------------------------------------*) + +lemma hypreal_of_nat_eq: + "hypreal_of_nat (n::nat) = hypreal_of_real (real n)" +by (simp add: real_of_nat_def) + +lemma hypreal_of_nat: + "hypreal_of_nat m = star_n (%n. real m)" +apply (fold star_of_def) +apply (simp add: real_of_nat_def) +done + +(* +FIXME: we should declare this, as for type int, but many proofs would break. +It replaces x+-y by x-y. +Addsimps [symmetric hypreal_diff_def] +*) + +use "hypreal_arith.ML" + +setup hypreal_arith_setup + + +subsection {* Exponentials on the Hyperreals *} + +lemma hpowr_0 [simp]: "r ^ 0 = (1::hypreal)" +by (rule power_0) + +lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)" +by (rule power_Suc) + +lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r" +by simp + +lemma hrealpow_two_le [simp]: "(0::hypreal) \ r ^ Suc (Suc 0)" +by (auto simp add: zero_le_mult_iff) + +lemma hrealpow_two_le_add_order [simp]: + "(0::hypreal) \ u ^ Suc (Suc 0) + v ^ Suc (Suc 0)" +by (simp only: hrealpow_two_le add_nonneg_nonneg) + +lemma hrealpow_two_le_add_order2 [simp]: + "(0::hypreal) \ u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)" +by (simp only: hrealpow_two_le add_nonneg_nonneg) + +lemma hypreal_add_nonneg_eq_0_iff: + "[| 0 \ x; 0 \ y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))" +by arith + + +text{*FIXME: DELETE THESE*} +lemma hypreal_three_squares_add_zero_iff: + "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))" +apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto) +done + +lemma hrealpow_three_squares_add_zero_iff [simp]: + "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) = + (x = 0 & y = 0 & z = 0)" +by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two) + +(*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract + result proved in Ring_and_Field*) +lemma hrabs_hrealpow_two [simp]: + "abs(x ^ Suc (Suc 0)) = (x::hypreal) ^ Suc (Suc 0)" +by (simp add: abs_mult) + +lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \ 2 ^ n" +by (insert power_increasing [of 0 n "2::hypreal"], simp) + +lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n" +apply (induct_tac "n") +apply (auto simp add: left_distrib) +apply (cut_tac n = n in two_hrealpow_ge_one, arith) +done + +lemma hrealpow: + "star_n X ^ m = star_n (%n. (X n::real) ^ m)" +apply (induct_tac "m") +apply (auto simp add: star_n_one_num star_n_mult power_0) +done + +lemma hrealpow_sum_square_expand: + "(x + (y::hypreal)) ^ Suc (Suc 0) = + x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y" +by (simp add: right_distrib left_distrib) + +lemma power_hypreal_of_real_number_of: + "(number_of v :: hypreal) ^ n = hypreal_of_real ((number_of v) ^ n)" +by simp +declare power_hypreal_of_real_number_of [of _ "number_of w", standard, simp] +(* +lemma hrealpow_HFinite: + fixes x :: "'a::{real_normed_algebra,recpower} star" + shows "x \ HFinite ==> x ^ n \ HFinite" +apply (induct_tac "n") +apply (auto simp add: power_Suc intro: HFinite_mult) +done +*) + +subsection{*Powers with Hypernatural Exponents*} + +definition + (* hypernatural powers of hyperreals *) + pow :: "['a::power star, nat star] \ 'a star" (infixr "pow" 80) where + hyperpow_def [transfer_unfold]: + "R pow N = ( *f2* op ^) R N" + +lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)" +by (simp add: hyperpow_def starfun2_star_n) + +lemma hyperpow_zero [simp]: + "\n. (0::'a::{recpower,semiring_0} star) pow (n + (1::hypnat)) = 0" +by transfer simp + +lemma hyperpow_not_zero: + "\r n. r \ (0::'a::{recpower,field} star) ==> r pow n \ 0" +by transfer (rule field_power_not_zero) + +lemma hyperpow_inverse: + "\r n. r \ (0::'a::{recpower,division_by_zero,field} star) + \ inverse (r pow n) = (inverse r) pow n" +by transfer (rule power_inverse) + +lemma hyperpow_hrabs: + "\r n. abs (r::'a::{recpower,ordered_idom} star) pow n = abs (r pow n)" +by transfer (rule power_abs [symmetric]) + +lemma hyperpow_add: + "\r n m. (r::'a::recpower star) pow (n + m) = (r pow n) * (r pow m)" +by transfer (rule power_add) + +lemma hyperpow_one [simp]: + "\r. (r::'a::recpower star) pow (1::hypnat) = r" +by transfer (rule power_one_right) + +lemma hyperpow_two: + "\r. (r::'a::recpower star) pow ((1::hypnat) + (1::hypnat)) = r * r" +by transfer (simp add: power_Suc) + +lemma hyperpow_gt_zero: + "\r n. (0::'a::{recpower,ordered_semidom} star) < r \ 0 < r pow n" +by transfer (rule zero_less_power) + +lemma hyperpow_ge_zero: + "\r n. (0::'a::{recpower,ordered_semidom} star) \ r \ 0 \ r pow n" +by transfer (rule zero_le_power) + +lemma hyperpow_le: + "\x y n. \(0::'a::{recpower,ordered_semidom} star) < x; x \ y\ + \ x pow n \ y pow n" +by transfer (rule power_mono [OF _ order_less_imp_le]) + +lemma hyperpow_eq_one [simp]: + "\n. 1 pow n = (1::'a::recpower star)" +by transfer (rule power_one) + +lemma hrabs_hyperpow_minus_one [simp]: + "\n. abs(-1 pow n) = (1::'a::{number_ring,recpower,ordered_idom} star)" +by transfer (rule abs_power_minus_one) + +lemma hyperpow_mult: + "\r s n. (r * s::'a::{comm_monoid_mult,recpower} star) pow n + = (r pow n) * (s pow n)" +by transfer (rule power_mult_distrib) + +lemma hyperpow_two_le [simp]: + "(0::'a::{recpower,ordered_ring_strict} star) \ r pow (1 + 1)" +by (auto simp add: hyperpow_two zero_le_mult_iff) + +lemma hrabs_hyperpow_two [simp]: + "abs(x pow (1 + 1)) = + (x::'a::{recpower,ordered_ring_strict} star) pow (1 + 1)" +by (simp only: abs_of_nonneg hyperpow_two_le) + +lemma hyperpow_two_hrabs [simp]: + "abs(x::'a::{recpower,ordered_idom} star) pow (1 + 1) = x pow (1 + 1)" +by (simp add: hyperpow_hrabs) + +text{*The precondition could be weakened to @{term "0\x"}*} +lemma hypreal_mult_less_mono: + "[| u u*x < v* y" + by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le) + +lemma hyperpow_two_gt_one: + "\r::'a::{recpower,ordered_semidom} star. 1 < r \ 1 < r pow (1 + 1)" +by transfer (simp add: power_gt1) + +lemma hyperpow_two_ge_one: + "\r::'a::{recpower,ordered_semidom} star. 1 \ r \ 1 \ r pow (1 + 1)" +by transfer (simp add: one_le_power) + +lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \ 2 pow n" +apply (rule_tac y = "1 pow n" in order_trans) +apply (rule_tac [2] hyperpow_le, auto) +done + +lemma hyperpow_minus_one2 [simp]: + "!!n. -1 pow ((1 + 1)*n) = (1::hypreal)" +by transfer (subst power_mult, simp) + +lemma hyperpow_less_le: + "!!r n N. [|(0::hypreal) \ r; r \ 1; n < N|] ==> r pow N \ r pow n" +by transfer (rule power_decreasing [OF order_less_imp_le]) + +lemma hyperpow_SHNat_le: + "[| 0 \ r; r \ (1::hypreal); N \ HNatInfinite |] + ==> ALL n: Nats. r pow N \ r pow n" +by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff) + +lemma hyperpow_realpow: + "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)" +by transfer (rule refl) + +lemma hyperpow_SReal [simp]: + "(hypreal_of_real r) pow (hypnat_of_nat n) \ Reals" +by (simp add: hyperpow_def Reals_eq_Standard) + +lemma hyperpow_zero_HNatInfinite [simp]: + "N \ HNatInfinite ==> (0::hypreal) pow N = 0" +by (drule HNatInfinite_is_Suc, auto) + +lemma hyperpow_le_le: + "[| (0::hypreal) \ r; r \ 1; n \ N |] ==> r pow N \ r pow n" +apply (drule order_le_less [of n, THEN iffD1]) +apply (auto intro: hyperpow_less_le) +done + +lemma hyperpow_Suc_le_self2: + "[| (0::hypreal) \ r; r < 1 |] ==> r pow (n + (1::hypnat)) \ r" +apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le) +apply auto +done + +lemma hyperpow_hypnat_of_nat: "\x. x pow hypnat_of_nat n = x ^ n" +by transfer (rule refl) + end diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/HyperNat.thy --- a/src/HOL/Hyperreal/HyperNat.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/HyperNat.thy Sat Dec 16 20:23:45 2006 +0100 @@ -8,7 +8,7 @@ header{*Hypernatural numbers*} theory HyperNat -imports Star +imports StarClasses begin types hypnat = "nat star" @@ -32,6 +32,9 @@ lemma hSuc_hSuc_eq [iff]: "\m n. (hSuc m = hSuc n) = (m = n)" by transfer (rule Suc_Suc_eq) +lemma zero_less_hSuc [iff]: "\n. 0 < hSuc n" +by transfer (rule zero_less_Suc) + lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" by transfer (rule diff_self_eq_0) @@ -282,17 +285,6 @@ lemma HNatInfinite_whn [simp]: "whn \ HNatInfinite" by (simp add: HNatInfinite_def) -text{* Example of an hypersequence (i.e. an extended standard sequence) - whose term with an hypernatural suffix is an infinitesimal i.e. - the whn'nth term of the hypersequence is a member of Infinitesimal*} - -lemma SEQ_Infinitesimal: - "( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal" -apply (simp add: hypnat_omega_def starfun star_n_inverse) -apply (simp add: Infinitesimal_FreeUltrafilterNat_iff) -apply (simp add: real_of_nat_Suc_gt_zero FreeUltrafilterNat_inverse_real_of_posnat) -done - lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \ FreeUltrafilterNat" apply (insert finite_atMost [of m]) apply (simp add: atMost_def) @@ -358,12 +350,12 @@ "star_n X \ HNatInfinite ==> \u. {n. u < X n}: FreeUltrafilterNat" apply (auto simp add: HNatInfinite_iff SHNat_eq) apply (drule_tac x="star_of u" in spec, simp) -apply (simp add: star_of_def star_n_less) +apply (simp add: star_of_def star_less_def starP2_star_n) done lemma FreeUltrafilterNat_HNatInfinite: "\u. {n. u < X n}: FreeUltrafilterNat ==> star_n X \ HNatInfinite" -by (auto simp add: star_n_less HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) +by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) lemma HNatInfinite_FreeUltrafilterNat_iff: "(star_n X \ HNatInfinite) = (\u. {n. u < X n}: FreeUltrafilterNat)" @@ -376,10 +368,6 @@ of_hypnat :: "hypnat \ 'a::semiring_1_cancel star" where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat" -abbreviation - hypreal_of_hypnat :: "hypnat => hypreal" where - "hypreal_of_hypnat == of_hypnat" - lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0" by transfer (rule of_nat_0) @@ -429,16 +417,6 @@ "\m. ((of_hypnat m::'a::ordered_semidom star) = 0) = (m = 0)" by transfer (rule of_nat_eq_0_iff) -lemma HNatInfinite_inverse_Infinitesimal [simp]: - "n \ HNatInfinite ==> inverse (hypreal_of_hypnat n) \ Infinitesimal" -apply (cases n) -apply (auto simp add: of_hypnat_def starfun_star_n real_of_nat_def [symmetric] star_n_inverse - HNatInfinite_FreeUltrafilterNat_iff - Infinitesimal_FreeUltrafilterNat_iff2) -apply (drule_tac x="Suc m" in spec) -apply (erule ultra, simp) -done - lemma HNatInfinite_of_hypnat_gt_zero: "N \ HNatInfinite \ (0::'a::ordered_semidom star) < of_hypnat N" by (rule ccontr, simp add: linorder_not_less) diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/NSA.thy --- a/src/HOL/Hyperreal/NSA.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/NSA.thy Sat Dec 16 20:23:45 2006 +0100 @@ -8,7 +8,7 @@ header{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*} theory NSA -imports HyperArith "../Real/RComplete" +imports HyperDef "../Real/RComplete" begin definition @@ -174,13 +174,10 @@ by (drule (1) Reals_diff, simp) lemma SReal_hrabs: "(x::hypreal) \ Reals ==> abs x \ Reals" -apply (auto simp add: SReal_def) -apply (rule_tac x="abs r" in exI) -apply simp -done +by (simp add: Reals_eq_Standard) lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \ Reals" -by (simp add: SReal_def) +by (simp add: Reals_eq_Standard) lemma SReal_divide_number_of: "r \ Reals ==> r/(number_of w::hypreal) \ Reals" by simp @@ -197,13 +194,13 @@ done lemma SReal_UNIV_real: "{x. hypreal_of_real x \ Reals} = (UNIV::real set)" -by (simp add: SReal_def) +by simp lemma SReal_iff: "(x \ Reals) = (\y. x = hypreal_of_real y)" by (simp add: SReal_def) lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = Reals" -by (auto simp add: SReal_def) +by (simp add: Reals_eq_Standard Standard_def) lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` Reals = UNIV" apply (auto simp add: SReal_def) @@ -212,14 +209,12 @@ lemma SReal_hypreal_of_real_image: "[| \x. x: P; P \ Reals |] ==> \Q. P = hypreal_of_real ` Q" -apply (simp add: SReal_def, blast) -done +by (simp add: SReal_def image_def, blast) lemma SReal_dense: "[| (x::hypreal) \ Reals; y \ Reals; x \r \ Reals. x HFinite" unfolding star_one_def by (rule HFinite_star_of) +lemma hrealpow_HFinite: + fixes x :: "'a::{real_normed_algebra,recpower} star" + shows "x \ HFinite ==> x ^ n \ HFinite" +apply (induct_tac "n") +apply (auto simp add: power_Suc intro: HFinite_mult) +done + lemma HFinite_bounded: "[|(x::hypreal) \ HFinite; y \ x; 0 \ y |] ==> y \ HFinite" apply (case_tac "x \ 0") @@ -522,6 +524,28 @@ e' \ x ; x \ e |] ==> (x::hypreal) \ Infinitesimal" by (auto intro: Infinitesimal_interval simp add: order_le_less) + +lemma lemma_Infinitesimal_hyperpow: + "[| (x::hypreal) \ Infinitesimal; 0 < N |] ==> abs (x pow N) \ abs x" +apply (unfold Infinitesimal_def) +apply (auto intro!: hyperpow_Suc_le_self2 + simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero) +done + +lemma Infinitesimal_hyperpow: + "[| (x::hypreal) \ Infinitesimal; 0 < N |] ==> x pow N \ Infinitesimal" +apply (rule hrabs_le_Infinitesimal) +apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto) +done + +lemma hrealpow_hyperpow_Infinitesimal_iff: + "(x ^ n \ Infinitesimal) = (x pow (hypnat_of_nat n) \ Infinitesimal)" +by (simp only: hyperpow_hypnat_of_nat) + +lemma Infinitesimal_hrealpow: + "[| (x::hypreal) \ Infinitesimal; 0 < n |] ==> x ^ n \ Infinitesimal" +by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) + lemma not_Infinitesimal_mult: fixes x y :: "'a::real_normed_div_algebra star" shows "[| x \ Infinitesimal; y \ Infinitesimal|] ==> (x*y) \Infinitesimal" @@ -2209,6 +2233,17 @@ apply (auto dest: FreeUltrafilterNat.not_memD simp add: Compl_le_inverse_eq) done +text{* Example of an hypersequence (i.e. an extended standard sequence) + whose term with an hypernatural suffix is an infinitesimal i.e. + the whn'nth term of the hypersequence is a member of Infinitesimal*} + +lemma SEQ_Infinitesimal: + "( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal" +apply (simp add: hypnat_omega_def starfun_star_n star_n_inverse) +apply (simp add: Infinitesimal_FreeUltrafilterNat_iff) +apply (simp add: real_of_nat_Suc_gt_zero FreeUltrafilterNat_inverse_real_of_posnat) +done + text{* Example where we get a hyperreal from a real sequence for which a particular property holds. The theorem is used in proofs about equivalence of nonstandard and diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/NatStar.thy --- a/src/HOL/Hyperreal/NatStar.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/NatStar.thy Sat Dec 16 20:23:45 2006 +0100 @@ -8,7 +8,7 @@ header{*Star-transforms for the Hypernaturals*} theory NatStar -imports HyperPow +imports Star begin lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn" diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/NthRoot.thy --- a/src/HOL/Hyperreal/NthRoot.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/NthRoot.thy Sat Dec 16 20:23:45 2006 +0100 @@ -7,7 +7,7 @@ header{*Existence of Nth Root*} theory NthRoot -imports SEQ +imports SEQ Parity begin definition diff -r 2ecfd8985982 -r 55cc354fd2d9 src/HOL/Hyperreal/Star.thy --- a/src/HOL/Hyperreal/Star.thy Sat Dec 16 19:37:07 2006 +0100 +++ b/src/HOL/Hyperreal/Star.thy Sat Dec 16 20:23:45 2006 +0100 @@ -305,6 +305,16 @@ hnorm_def star_of_nat_def starfun_star_n star_n_inverse star_n_less real_of_nat_def) +lemma HNatInfinite_inverse_Infinitesimal [simp]: + "n \ HNatInfinite ==> inverse (hypreal_of_hypnat n) \ Infinitesimal" +apply (cases n) +apply (auto simp add: of_hypnat_def starfun_star_n real_of_nat_def [symmetric] star_n_inverse real_norm_def + HNatInfinite_FreeUltrafilterNat_iff + Infinitesimal_FreeUltrafilterNat_iff2) +apply (drule_tac x="Suc m" in spec) +apply (erule ultra, simp) +done + lemma approx_FreeUltrafilterNat_iff: "star_n X @= star_n Y = (\r>0. {n. norm (X n - Y n) < r} : FreeUltrafilterNat)" apply (subst approx_minus_iff)